Home
Class 12
MATHS
The domain of the function f(x)=(sec^(-1...

The domain of the function` f(x)=(sec^(-1)x)/(sqrt(x-[x]))` , where [x] denotes the greatest integers less than or equal to x is defined for all x belonging to

A

R

B

`R-{(-1,1) cup (n | n in z}}`

C

`R^(+)- (0,1)`

D

`R^(+) -{n | n in N}`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The real valued function f(x)=(cosec^(-1)x)/(sqrt(x-[x])) , where [x] denotes the greatest integer less than or equal to x, is definde for all x belonging to :

The domain of the function f(x) = sqrt((4-x^(2))/([x]+2)) where [x] denotes the greatest integer less than or equal to x,is

The domain of the function f(x)=cos^(-1)[secx] , where [x] denotes the greatest integer less than or equal to x, is

The function f(x)=(tan |pi[x-pi]|)/(1+[x]^(2)) , where [x] denotes the greatest integer less than or equal to x, is

The function f(x)=(sec^(-1)x)/(sqrt(x)-[x]), where [x] denotes the greatest integer less than or equal to x, is defined for all x in R(b)R-{(-1,1)uu{n|n in Z}}R^(+)-(0,1)(d)R^(+)-{n|n in N}

If f(x)=|x-1|-[x] , where [x] is the greatest integer less than or equal to x, then

The domain of the function f(x)=(1)/(sqrt([x]^(2)-2[x]-8)) is,where [^(*)] denotes greatest integer function

Let f(x)=(x^(2)-9x+20)/(x-[x]) where [x] denotes greatest integer less than or equal to x), then