Home
Class 12
MATHS
If f(x)=sin{[x+5]+{x-{x-{x}}}" for "x in...

If `f(x)=sin{[x+5]+{x-{x-{x}}}" for "x in (0,pi/4)` is invertible, where {.} and [.] represent fractional part and greatest integer functions respectively, then `f^(-1) (x)` is ::
`I. sin^(-1)x` II. `pi/2-cos^(-1)x` III. `sin^(-1){x}` IV`.cos^(-1){x}`
The correct choice is:

A

I,II,III

B

II,III

C

III,IV

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \sin\{[x+5] + \{x - \{x - \{x\}\}\}\} \) for \( x \) in the interval \( (0, \frac{\pi}{4}) \) and determine its inverse. ### Step 1: Understanding the Components of the Function 1. **Greatest Integer Function**: The greatest integer function \( [x] \) gives the largest integer less than or equal to \( x \). 2. **Fractional Part Function**: The fractional part function \( \{x\} \) is defined as \( x - [x] \). ### Step 2: Simplifying the Function 1. **Evaluate \( [x + 5] \)**: - Since \( x \) is in the interval \( (0, \frac{\pi}{4}) \), \( x + 5 \) will be in the interval \( (5, 5 + \frac{\pi}{4}) \). - Thus, \( [x + 5] = 5 \) (as it is the largest integer less than or equal to \( x + 5 \)). 2. **Evaluate \( \{x - \{x - \{x\}\}\} \)**: - Since \( x \) is in \( (0, 1) \), \( \{x\} = x \). - Therefore, \( \{x - \{x - \{x\}\}\} = \{x - \{x - x\}\} = \{x - 0\} = \{x\} = x \). 3. **Combine the Results**: - Now we can substitute back into the function: \[ f(x) = \sin\{5 + x\} \] ### Step 3: Finding the Inverse Function 1. **Determine the Range of \( f(x) \)**: - As \( x \) varies from \( 0 \) to \( \frac{\pi}{4} \), \( 5 + x \) varies from \( 5 \) to \( 5 + \frac{\pi}{4} \). - Therefore, \( f(x) = \sin(5 + x) \) will take values from \( \sin(5) \) to \( \sin(5 + \frac{\pi}{4}) \). 2. **Finding the Inverse**: - The inverse function \( f^{-1}(y) \) can be expressed as: \[ f^{-1}(y) = \sin^{-1}(y) \quad \text{or} \quad f^{-1}(y) = \frac{\pi}{2} - \cos^{-1}(y) \] - Since \( \sin^{-1}(y) + \cos^{-1}(y) = \frac{\pi}{2} \), both expressions are valid. ### Step 4: Conclusion From the analysis, we find that the inverse function \( f^{-1}(x) \) can be expressed as: - \( \sin^{-1}(x) \) - \( \frac{\pi}{2} - \cos^{-1}(x) \) Thus, the correct choices for \( f^{-1}(x) \) are: - I. \( \sin^{-1} x \) - II. \( \frac{\pi}{2} - \cos^{-1} x \) ### Final Answer The correct choices are I and II.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the range of each of the following functions: (where {.} and [.] represents fractional part and greatest integer part functions respectively) f(x)=[1/(sin{x})]

For the function f(x) = sin (pi[x]) xx cos^(-1)([x]) , choose the correct option. (where [.] represents the greatest integer function)

" The range of the function "f(x)=sin(sin^(-1)[x^(2)-1])" is (where "[" .] represents greatest integer function) "

The range of the function f(x)=sin(sin^(-1)[x^(2)-1]) is (where[*] represents greatest integer function)

Period of f(x)=e^(cos x)+sin pi[x] is (l.] and {.} denotes the greatest integer function and fractional part function respectively)

Let [x] be the greatest integer function f(x)=((sin((1)/(4)(pi[x])))/([x])) is

Let f(x) = ([x] - ["sin" x])/(1 - "sin" [cos x]) and g (x) = (1)/(f(x)) and [] represents the greatest integer function, then

The domain of f(x)=e^(sin(x-[x]))-[x]cos(pi/([x-1])) ,where [*] represents greatest integer function,is

The function f(x)=cos^(-1)((2[sin x|+|cos x|])/(sin^(2)x+2sin x+(11)/(4))) is defined if x belongs to (where [.] represents the greatest integer function)

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)