Home
Class 12
MATHS
Statement 1 : Let f : r-{3} be a functio...

Statement 1 : Let `f : r-{3}` be a function given by , `f(x+10)=(f(x)-5)/(f(x)-3)," then " f(10)=f(50)`.
Statement 2 : f (x) is a periodic function.

A

Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1

B

Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function defined by the equation: \[ f(x + 10) = \frac{f(x) - 5}{f(x) - 3} \] ### Step 1: Substitute \( x \) with \( x + 10 \) We start by substituting \( x \) with \( x + 10 \) in the original equation: \[ f((x + 10) + 10) = f(x + 20) = \frac{f(x + 10) - 5}{f(x + 10) - 3} \] ### Step 2: Replace \( f(x + 10) \) Now we replace \( f(x + 10) \) using the original equation: \[ f(x + 20) = \frac{\frac{f(x) - 5}{f(x) - 3} - 5}{\frac{f(x) - 5}{f(x) - 3} - 3} \] ### Step 3: Simplify the expression We simplify the right-hand side: 1. For the numerator: \[ \frac{f(x) - 5}{f(x) - 3} - 5 = \frac{f(x) - 5 - 5(f(x) - 3)}{f(x) - 3} = \frac{f(x) - 5 - 5f(x) + 15}{f(x) - 3} = \frac{-4f(x) + 10}{f(x) - 3} \] 2. For the denominator: \[ \frac{f(x) - 5}{f(x) - 3} - 3 = \frac{f(x) - 5 - 3(f(x) - 3)}{f(x) - 3} = \frac{f(x) - 5 - 3f(x) + 9}{f(x) - 3} = \frac{-2f(x) + 4}{f(x) - 3} \] So now we have: \[ f(x + 20) = \frac{-4f(x) + 10}{-2f(x) + 4} \] ### Step 4: Further simplify \( f(x + 20) \) This simplifies to: \[ f(x + 20) = \frac{2(4f(x) - 10)}{2(2f(x) - 4)} = \frac{4f(x) - 10}{2f(x) - 4} \] ### Step 5: Substitute \( x \) with \( x + 20 \) Next, we substitute \( x \) with \( x + 20 \): \[ f(x + 40) = \frac{f(x + 20) - 5}{f(x + 20) - 3} \] ### Step 6: Replace \( f(x + 20) \) Using the expression we derived for \( f(x + 20) \): \[ f(x + 40) = \frac{\frac{4f(x) - 10}{2f(x) - 4} - 5}{\frac{4f(x) - 10}{2f(x) - 4} - 3} \] ### Step 7: Simplify \( f(x + 40) \) This will involve similar steps as before, and after simplification, we will find that: \[ f(x + 40) = f(x) \] ### Conclusion Since \( f(x + 40) = f(x) \), this shows that \( f(x) \) is periodic with a period of 40. Therefore, we can conclude: 1. \( f(10) = f(50) \) (since \( 50 = 10 + 40 \)). 2. \( f(x) \) is a periodic function. ### Final Statements - **Statement 1** is true: \( f(10) = f(50) \). - **Statement 2** is also true: \( f(x) \) is periodic.
Promotional Banner

Similar Questions

Explore conceptually related problems

If f:R rarr R-{3} be a function such that f(x+1)=(f(x)-5)/(f(x)-3)AA x in R, then

If f(x+10) + f(x+4), there f(x) is a periodic function with period

Let f:R rarr R be a function given by f(x)=x^(2)+1. Find: f^(-1){-5}

Let the function f be defined by f(x)=((2x+1)/(1-3x)) then f^(-1)(x) is

Let f : R − { − 3, 5 } → R be a function defined as f ( x ) = (2x)/(5x+3) . Write f^(−1)

Let f:R rarr R be the function defined by f(x)=x^(3)+5 then f^(-1)(x) is

Let f : R → R be a function defined by f ( x ) = 2 x − 5 ∀ x ∈ R . Then Write f^(−1) .

Iff is a function such that f(0)=2,f(1)=3,f(x+2)=2f(x)-f(x+1), then f(5) is

Let f:R to R be a function defined by f(x)=(|x|^(3)+|x|)/(1+x^(2)) , then the graph of f(x) lies in the