Home
Class 12
MATHS
The number of elements in the range of f...

The number of elements in the range of functions: `y=sin^(-1) [x^(2)+5/9]+cos^(-1) [x^(2)-4/9]` where where [.] denotes the greatest integer function is:

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of elements in the range of the function \( y = \sin^{-1} \left( \lfloor x^2 + \frac{5}{9} \rfloor \right) + \cos^{-1} \left( \lfloor x^2 - \frac{4}{9} \rfloor \right) \), we will follow these steps: ### Step 1: Determine the range of \( x^2 \) The expression \( x^2 \) can take any non-negative value, meaning \( x^2 \geq 0 \). However, we need to find the conditions under which the arguments of the inverse sine and cosine functions are valid. ### Step 2: Find the conditions for \( \lfloor x^2 + \frac{5}{9} \rfloor \) For \( \sin^{-1} \left( \lfloor x^2 + \frac{5}{9} \rfloor \right) \) to be defined, \( \lfloor x^2 + \frac{5}{9} \rfloor \) must be in the range \([-1, 1]\). 1. **Lower Bound**: \[ \lfloor x^2 + \frac{5}{9} \rfloor \geq -1 \implies x^2 + \frac{5}{9} \geq -1 \implies x^2 \geq -1 - \frac{5}{9} \implies x^2 \geq -\frac{14}{9} \text{ (always true since } x^2 \geq 0\text{)} \] 2. **Upper Bound**: \[ \lfloor x^2 + \frac{5}{9} \rfloor < 2 \implies x^2 + \frac{5}{9} < 2 \implies x^2 < 2 - \frac{5}{9} \implies x^2 < \frac{13}{9} \] Thus, we have: \[ 0 \leq x^2 < \frac{13}{9} \] ### Step 3: Find the conditions for \( \lfloor x^2 - \frac{4}{9} \rfloor \) For \( \cos^{-1} \left( \lfloor x^2 - \frac{4}{9} \rfloor \right) \) to be defined, \( \lfloor x^2 - \frac{4}{9} \rfloor \) must also be in the range \([-1, 1]\). 1. **Lower Bound**: \[ \lfloor x^2 - \frac{4}{9} \rfloor \geq -1 \implies x^2 - \frac{4}{9} \geq -1 \implies x^2 \geq -1 + \frac{4}{9} \implies x^2 \geq -\frac{5}{9} \text{ (always true)} \] 2. **Upper Bound**: \[ \lfloor x^2 - \frac{4}{9} \rfloor < 2 \implies x^2 - \frac{4}{9} < 2 \implies x^2 < 2 + \frac{4}{9} \implies x^2 < \frac{22}{9} \] Thus, we have: \[ 0 \leq x^2 < \frac{22}{9} \] ### Step 4: Combine the conditions The conditions we derived are: 1. \( 0 \leq x^2 < \frac{13}{9} \) 2. \( 0 \leq x^2 < \frac{22}{9} \) The more restrictive condition is: \[ 0 \leq x^2 < \frac{13}{9} \] ### Step 5: Evaluate the range of \( y \) Now we need to evaluate \( y \) at the endpoints of the range of \( x^2 \): - When \( x^2 = 0 \): \[ y = \sin^{-1} \left( \lfloor 0 + \frac{5}{9} \rfloor \right) + \cos^{-1} \left( \lfloor 0 - \frac{4}{9} \rfloor \right) = \sin^{-1}(0) + \cos^{-1}(-1) = 0 + \pi = \pi \] - When \( x^2 \) approaches \( \frac{13}{9} \): \[ \lfloor \frac{13}{9} + \frac{5}{9} \rfloor = \lfloor \frac{18}{9} \rfloor = 2 \text{ (not valid)} \] Thus, we check values just below \( \frac{13}{9} \). For \( x^2 = 1 \): \[ y = \sin^{-1} \left( \lfloor 1 + \frac{5}{9} \rfloor \right) + \cos^{-1} \left( \lfloor 1 - \frac{4}{9} \rfloor \right) = \sin^{-1}(1) + \cos^{-1}(0) = \frac{\pi}{2} + \frac{\pi}{2} = \pi \] ### Conclusion Since both evaluations lead to \( y = \pi \) and there are no other values of \( y \) that we can derive from the given conditions, the number of elements in the range of the function is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function y=2sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)] is (where, [.] denotes the greatest integer function)

f(x)=sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)] where [.1 denotes the greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

f(x)=sin^(-1)[log_(2)((x^(2))/(2))] where [.] denotes the greatest integer function.

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

f(x)=cos^(-1)sqrt(log_([x])((|x|)/(x))) where [.1 denotes the greatest integer function

The range of f(x)=[4^(x)+2^(x)+1] (where [.] denotes greatest integer function) is

Let f(x)=cos ec^(-1)[1+sin^(2)x], where [*] denotes the greatest integer function,then the range of f

Number of solutions of sin x=[x] where [.] denotes the greatest integer function is