Home
Class 12
MATHS
The number of integers in the range of f...

The number of integers in the range of function `f(x)= [sinx] + [cosx] + [sinx + cosx]` is (where `[.]`= denotes greatest integer function)

Text Solution

Verified by Experts

The correct Answer is:
5
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of integers in the range of function f(x)=[sin x]+[cos x]+[sin x+cos x] is (where [.]= denotes greatest integer function)

Find the Range of function f(x) = [|sin x| + |cosx |] , where [.] denotes are greatest integer function , is :

If f(x)=[2x], where [.] denotes the greatest integer function,then

f(x)=[abs(sinx)+abs(cosx)] , where [*] denotes the greatest integer function.

The range of f(x)=[sin{x}], where [x] denotes greatest integer function

The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi] , where [*] denotes the greatest integer function , is

Find the number of elements contained in the range of the function f (x) = [(x )/(6)][(-6)/(x)]AAx in (0,30)] where [.] denotes greatest integer function)

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

The range of the function f(x) =[sinx+cosx] (where [x] denotes the greatest integer function) is f(x) in :