Home
Class 12
MATHS
If F :[1,oo)vec[2,oo) is given by f(x)=x...

If `F :[1,oo)vec[2,oo)` is given by `f(x)=x+1/x ,t h e nf^(-1)(x)` equals. `(x+sqrt(x^2-4))/2` (b) `x/(1+x^2)` (c) `(x-sqrt(x^2-4))/2` `1+sqrt(x^2-4)`

A

`(x+sqrt(x^(2)-4)/(2)`

B

`(x)/(1+x^(2))`

C

`(x-sqrt(x^(2)-4))/(4)`

D

`1+sqrt(x^(2)-4)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If F:[1,oo)vec 2,oo is given by f(x)=x+(1)/(x), then f^(-1)(x) equals.(x+sqrt(x^(2)-4))/(2)(b)(x)/(1+x^(2))(c)(x-sqrt(x^(2)-4))/(2)(d)1+sqrt(x^(2)-4)

if f:[1,oo)->[2,oo) is given by f(x)=x+1/x then f^-1(x) equals to : a) (x+sqrt(x^2-4))/2 b) x/(1+x^2) c) (x-sqrt(x^2-4))/2 d) 1+sqrt(x^2-4)

If F:[1,x)rarr[2,x] is given by f(x)=x+(1)/(x), then f^(-1)(x) equals.(a) (x+sqrt(x^(2)-4))/(2)(b)(x)/(1+x^(2))(c)(x-sqrt(x^(2)-4))/(2) (d) 1+sqrt(x^(2)-4)

If f : [1, oo) rarr [2, oo) is given by f(x) = x + (1)/(x) then f^(-1) (x) equals:

If f:[2,oo)rarr(-oo,4], where f(x)=x(4-x) then find f^(-1)(x)

If the function f:[2,oo)rarr[-1,oo) is defined by f(x)=x^(2)-4x+3 then f^(-1)(x)=

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

lim_(xrarr oo)(sqrt(3x^2-1)+sqrt(2x^2-1))/(4x+3)=