Home
Class 12
MATHS
int(0)^(1)(dx)/(e^(x)+e^(-x))...

`int_(0)^(1)(dx)/(e^(x)+e^(-x))`

Text Solution

Verified by Experts

The correct Answer is:
`tan^(-1)e-(pi)/(4)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(oo)(dx)/(e^(x)+e^(-x))

int_(0)^(1) (1)/(e^(x) +e^(-x)) dx

int_(0)^(1)(1)/(e^(x)+e^(-x))dx=

If int_(0)^(1)(1)/(e^(x)+e^(-x))dx = tan^(-1)p , then : p =

int_(0)^(oo)(2)/(e^(x)+e^(-x))dx

The value of int_(0) ^(1) (dx )/( e ^(x) + e) is equal to

int_(0)^(1)(e^(x)dx)/(1+e^(x))

int(e^(x)dx)/(e^(x)-1)

Solve int_(-1)^(1)(e^(x)-e^(-x))dx

int_(0)^(1)x^2e^(2x)dx