Home
Class 12
MATHS
int(0)^(1)x log (1+2 x)dx...

`int_(0)^(1)x log (1+2 x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} x \log(1 + 2x) \, dx \), we will use the substitution method followed by integration by parts. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = \log(1 + 2x) \). Then, we can express \( x \) in terms of \( t \): \[ 1 + 2x = e^t \implies 2x = e^t - 1 \implies x = \frac{e^t - 1}{2} \] Next, we need to find \( dx \): \[ dx = \frac{d}{dt}\left(\frac{e^t - 1}{2}\right) dt = \frac{1}{2} e^t dt \] ### Step 2: Change the limits of integration When \( x = 0 \): \[ t = \log(1 + 2 \cdot 0) = \log(1) = 0 \] When \( x = 1 \): \[ t = \log(1 + 2 \cdot 1) = \log(3) \] So the limits change from \( x: 0 \to 1 \) to \( t: 0 \to \log(3) \). ### Step 3: Substitute into the integral Now we can substitute \( x \), \( \log(1 + 2x) \), and \( dx \) into the integral: \[ I = \int_{0}^{\log(3)} \left(\frac{e^t - 1}{2}\right) t \left(\frac{1}{2} e^t\right) dt \] This simplifies to: \[ I = \frac{1}{4} \int_{0}^{\log(3)} (e^t - 1) t e^t \, dt \] \[ = \frac{1}{4} \int_{0}^{\log(3)} (t e^{2t} - t e^t) \, dt \] ### Step 4: Split the integral We can split this into two separate integrals: \[ I = \frac{1}{4} \left( \int_{0}^{\log(3)} t e^{2t} \, dt - \int_{0}^{\log(3)} t e^t \, dt \right) \] ### Step 5: Integration by parts For the first integral \( I_1 = \int t e^{2t} \, dt \): Let \( u = t \) and \( dv = e^{2t} dt \). Then \( du = dt \) and \( v = \frac{1}{2} e^{2t} \). Using integration by parts: \[ I_1 = \frac{1}{2} t e^{2t} - \frac{1}{2} \int e^{2t} dt = \frac{1}{2} t e^{2t} - \frac{1}{4} e^{2t} \] Now evaluate from \( 0 \) to \( \log(3) \): \[ I_1 = \left[ \frac{1}{2} t e^{2t} - \frac{1}{4} e^{2t} \right]_{0}^{\log(3)} \] Calculating at the limits: \[ = \left[ \frac{1}{2} \log(3) e^{2 \log(3)} - \frac{1}{4} e^{2 \log(3)} \right] - \left[ 0 - \frac{1}{4} \right] \] \[ = \left[ \frac{1}{2} \log(3) \cdot 9 - \frac{9}{4} \right] + \frac{1}{4} \] \[ = \frac{9}{2} \log(3) - \frac{9}{4} + \frac{1}{4} = \frac{9}{2} \log(3) - \frac{8}{4} = \frac{9}{2} \log(3) - 2 \] For the second integral \( I_2 = \int t e^t \, dt \): Let \( u = t \) and \( dv = e^t dt \). Then \( du = dt \) and \( v = e^t \). Using integration by parts: \[ I_2 = t e^t - e^t \] Evaluate from \( 0 \) to \( \log(3) \): \[ I_2 = \left[ t e^t - e^t \right]_{0}^{\log(3)} = \left[ \log(3) \cdot 3 - 3 \right] - [0 - 1] = 3 \log(3) - 3 + 1 = 3 \log(3) - 2 \] ### Step 6: Combine results Now substitute \( I_1 \) and \( I_2 \) back into the expression for \( I \): \[ I = \frac{1}{4} \left( \left( \frac{9}{2} \log(3) - 2 \right) - \left( 3 \log(3) - 2 \right) \right) \] \[ = \frac{1}{4} \left( \frac{9}{2} \log(3) - 3 \log(3) \right) = \frac{1}{4} \left( \frac{9 - 6}{2} \log(3) \right) = \frac{3}{8} \log(3) \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{3}{8} \log(3) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate :int_(0)^(1)x log(1+2x)dx

int_(0)^(1) log (1/x-1) dx =

Evaluate int_(0)^(1/2)x log(1-x)dx

Evaluate the following definite integrals: int_(0)^(1)x log(1+x/2)dx

Evaluate the following integral: int_(0)^(1)log(1+x)dx

int_(0)^(1)(1+x)*log(1+x)dx=

int_(0)^(1)(log x)dx

int_(0)^(1)(log(1-x))/(x)dx

int_(1)^(2)x log x dx =

int_(x)^(1)x ln(1+2x)dx