Home
Class 12
MATHS
int(0)^(log 2)(e^(x))/(1+e^(x))dx=...

`int_(0)^(log 2)(e^(x))/(1+e^(x))dx=`

Text Solution

Verified by Experts

The correct Answer is:
`ln.(4)/(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

int log(e^(x)+1)(e^(x))dx

" (2) "int_(1)^(2)(log e^(x))/(x^(2))dx

int(ln(e^(x)+1))/(e^(x))dx

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

The solution of the equation int_(log_(2))^(x) (1)/(e^(x)-1)dx=log(3)/(2) is given by x=

int_(1)^(e)(e^(x))/(x)(1+x log x)dx

The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int_(1)^(2) (log_(e) x)/(x^(2)) dx

Evaluate the following definite integral: int_(1)^(e)(e^(x))/(x)(1+x log x)dx