Home
Class 12
MATHS
Evaluate the integral I=int(0)^(2)|x-1|d...

Evaluate the integral `I=int_(0)^(2)|x-1|dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{2} |x - 1| \, dx \), we need to consider the behavior of the function \( |x - 1| \) over the interval from 0 to 2. ### Step 1: Identify the points where the expression inside the modulus changes sign. The expression \( x - 1 \) changes sign at \( x = 1 \): - For \( x < 1 \), \( x - 1 < 0 \) so \( |x - 1| = -(x - 1) = 1 - x \). - For \( x \geq 1 \), \( x - 1 \geq 0 \) so \( |x - 1| = x - 1 \). ### Step 2: Break the integral into two parts based on the point where the modulus changes. We can split the integral at \( x = 1 \): \[ I = \int_{0}^{1} |x - 1| \, dx + \int_{1}^{2} |x - 1| \, dx \] This gives us: \[ I = \int_{0}^{1} (1 - x) \, dx + \int_{1}^{2} (x - 1) \, dx \] ### Step 3: Evaluate the first integral \( \int_{0}^{1} (1 - x) \, dx \). \[ \int (1 - x) \, dx = x - \frac{x^2}{2} + C \] Now, we evaluate this from 0 to 1: \[ \left[ x - \frac{x^2}{2} \right]_{0}^{1} = \left( 1 - \frac{1^2}{2} \right) - \left( 0 - 0 \right) = 1 - \frac{1}{2} = \frac{1}{2} \] ### Step 4: Evaluate the second integral \( \int_{1}^{2} (x - 1) \, dx \). \[ \int (x - 1) \, dx = \frac{x^2}{2} - x + C \] Now, we evaluate this from 1 to 2: \[ \left[ \frac{x^2}{2} - x \right]_{1}^{2} = \left( \frac{2^2}{2} - 2 \right) - \left( \frac{1^2}{2} - 1 \right) = \left( 2 - 2 \right) - \left( \frac{1}{2} - 1 \right) = 0 - \left( \frac{1}{2} - 1 \right) = 0 + \frac{1}{2} = \frac{1}{2} \] ### Step 5: Combine the results of the two integrals. Now we add the results of both integrals: \[ I = \frac{1}{2} + \frac{1}{2} = 1 \] ### Final Answer: Thus, the value of the integral \( I = \int_{0}^{2} |x - 1| \, dx \) is \( \boxed{1} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the integral I = int_(0)^(2) |1-x| dx

The value of the integral int_(0)^(2)|x^(2)-1|dx is

Evaluate the integrals : I = int_(-3)^(-2) (dx)/(x^(2) - 1) ,

Evaluate the integral I = int_(0)^(1) (I n (1 + x))/( 1 + x) dx

Evaluate the integral : I = int_(1)^(5) (4x - 1) dx

Evaluate the integrals int_(0)^(2)(dx)/(x+4-x^(2))

Evaluate the integral int_(0)^(1)x(1-x)^(5)dx, using definition of definite integrals as a limit of sum

By using the properties of definite integrals, evaluate the integrals int_(0)^(2)x sqrt(2-x)dx

Evaluate the integrals : I = int_(-2)^(-1) (dx)/((11 + 5 x)^(3)) ,