Home
Class 12
MATHS
int(0)^(2pi)[|sin x|+|cos x|]dx, where [...

`int_(0)^(2pi)[|sin x|+|cos x|]dx`, where [.] denotes the greatest integer function, is equal to :

A

`pi`

B

`2pi`

C

`pi//sqrt(2)`

D

`pi sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{2\pi} \lfloor |\sin x| + |\cos x| \rfloor \, dx \), where \( \lfloor . \rfloor \) denotes the greatest integer function, we will follow these steps: ### Step 1: Analyze the expression \( |\sin x| + |\cos x| \) We know that both \( |\sin x| \) and \( |\cos x| \) are non-negative and oscillate between 0 and 1. The maximum value of \( |\sin x| + |\cos x| \) occurs when both sine and cosine are at their maximum values. ### Step 2: Find the maximum and minimum values of \( |\sin x| + |\cos x| \) Using the Cauchy-Schwarz inequality, we can establish that: \[ |\sin x| + |\cos x| \leq \sqrt{(|\sin x|^2 + |\cos x|^2)(1^2 + 1^2)} = \sqrt{1 \cdot 2} = \sqrt{2} \] Thus, we have: \[ 1 \leq |\sin x| + |\cos x| \leq \sqrt{2} \] ### Step 3: Determine the range of \( \lfloor |\sin x| + |\cos x| \rfloor \) Since \( \sqrt{2} \approx 1.414 \), we can conclude that: \[ 1 \leq |\sin x| + |\cos x| < 2 \] This implies that: \[ \lfloor |\sin x| + |\cos x| \rfloor = 1 \] for all \( x \) in the interval \( [0, 2\pi] \). ### Step 4: Set up the integral Now we can substitute this result into the integral: \[ \int_{0}^{2\pi} \lfloor |\sin x| + |\cos x| \rfloor \, dx = \int_{0}^{2\pi} 1 \, dx \] ### Step 5: Evaluate the integral The integral simplifies to: \[ \int_{0}^{2\pi} 1 \, dx = [x]_{0}^{2\pi} = 2\pi - 0 = 2\pi \] ### Conclusion Thus, the value of the integral is: \[ \int_{0}^{2\pi} \lfloor |\sin x| + |\cos x| \rfloor \, dx = 2\pi \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral I=int_(0)^(pi)[|sinx|+|cosx|]dx, (where [.] denotes the greatest integer function) is equal to

The value of int_(0)^(2pi)[sin 2x(1+cos 3x)]dx , where [t] denotes the greatest integer function, is:

Evaluate: int_(0)^(2 pi)[sin x]dx, where [.] denotes the greatest integer function.

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

The value of int_(0)^(2017)sin(x-[x])dx : (where [ . ] denotes the greatest integer function) is equal to

int_(0)^(pi)[cos x] dx, [ ] denotes the greatest integer function , is equal to