Home
Class 12
MATHS
If f(0) = 1, f(2) = 3, f'(2) = 5 and f'(...

If `f(0) = 1, f(2) = 3, f'(2) = 5 and f'(0)` is finite, then `int_0^1 xf''(2x) dx` is equal to (A) zero (B) 1 (C)2 (D) none of these

A

zero

B

1

C

2

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(0)=0, f(3)=3 and f'(3)=4 , then the value of int_(0)^(1)xf'' (3x)dx is equal to

If f(0)=1,f(2)=3,f'(2)=5 ,then the value of the definite integral int_(0)^(1)xf''(2x)dx is

f(x) = min{2 sinx, 1- cos x, 1} then int_0^(pi)f(x) dx is equal to

If f(0)=1,f(2)=3,f'(2)=5, then find the value of int_(0)^(1)xf''(2x)dx

Let f(x)=max. {2-x,2,1+x} then int_(-1)^1 f(x)dx= (A) 0 (B) 2 (C) 9/2 (D) none of these

If f(0)=1 , f(2)=3 , f'(2)=5 , then the value of the definite integral int_0^(1)xf''(2x)dx is _________

f(0)=1 , f(2)=e^2 , f'(x)=f'(2-x) , then find the value of int_0^(2)f(x)dx

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

[ If f(x)=|x|+|x-1|, then int_(0)^(2)f(x)dx equals- [ (A) 3, (B) 2, (C) 0, (D) -1]]