Home
Class 12
MATHS
The equation int(-pi/4)^(pi/4){a|sinx|+(...

The equation `int_(-pi/4)^(pi/4){a|sinx|+(bsinx)/(1+cos^2x)+c}dx=0` where `a,b,c` are constants gives a relation between

A

a, b and c

B

a and c

C

a and b

D

b and c

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The equation int_(-(pi)/(4))^((pi)/(4)){a|sin x|+(b sin x)/(1+cos^(2)x)+c}dx=0 where a,b,c are constants gives a relation between

int_(pi//4)^(3pi//4)(xsinx)/(1+sinx)dx

int_(-pi//4)^(pi//4)(dx)/((1+sinx))

int_(-pi)^(pi) (2x(1+ sinx))/(1+ cos^(2)x)dx is

int_(-pi//2)^(pi//2) (5sin^3 x+8sinx+4 cos^2x) dx

int_(-pi//4)^(pi//4)|sinx|dx=(2-sqrt(2))

If int_(-pi//3)^(pi//3) ((a)/(3)|tan x|+(b tan x)/(1+sec x)+c)dx=0 where a, b, c are constants, then c=

int_(-(pi)/(4))^((pi)/(4))(dx)/(1+cos2x) is

int_(-(pi)/(4))^((pi)/(4))(2 pi+sin2 pi x)/(2-cos2x)dx