Home
Class 12
MATHS
int(1)^(3)|(2-x)log(e )x|dx is equal to...

`int_(1)^(3)|(2-x)log_(e )x|dx` is equal to:

A

`(3)/(2)log_(e )3+(1)/(2)`

B

`"log"_(e )(16)/(3sqrt(2))(1)/(2)`

C

`-(3)/(2)log_(e )3-(1)/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{1}^{3} |(2-x) \log_e x| \, dx \), we first need to analyze the expression inside the absolute value. ### Step 1: Determine the intervals for the absolute value The expression \( 2 - x \) changes sign at \( x = 2 \): - For \( x \in [1, 2] \), \( 2 - x \geq 0 \) so \( |2 - x| = 2 - x \). - For \( x \in [2, 3] \), \( 2 - x < 0 \) so \( |2 - x| = -(2 - x) = x - 2 \). ### Step 2: Split the integral into two parts We can write the integral as: \[ \int_{1}^{3} |(2-x) \log_e x| \, dx = \int_{1}^{2} (2-x) \log_e x \, dx + \int_{2}^{3} (x-2) \log_e x \, dx \] ### Step 3: Evaluate the first integral \( \int_{1}^{2} (2-x) \log_e x \, dx \) Using integration by parts, let: - \( u = \log_e x \) so \( du = \frac{1}{x} \, dx \) - \( dv = (2-x) \, dx \) so \( v = 2x - \frac{x^2}{2} \) Now, applying integration by parts: \[ \int (2-x) \log_e x \, dx = (2x - \frac{x^2}{2}) \log_e x \bigg|_{1}^{2} - \int (2x - \frac{x^2}{2}) \cdot \frac{1}{x} \, dx \] Calculating the boundary term: At \( x = 2 \): \[ (2(2) - \frac{2^2}{2}) \log_e 2 = (4 - 2) \log_e 2 = 2 \log_e 2 \] At \( x = 1 \): \[ (2(1) - \frac{1^2}{2}) \log_e 1 = (2 - \frac{1}{2}) \cdot 0 = 0 \] Thus, the boundary term contributes \( 2 \log_e 2 - 0 = 2 \log_e 2 \). Now we need to evaluate the integral: \[ \int (2 - x) \, dx = 2x - \frac{x^2}{2} \bigg|_{1}^{2} = (4 - 2) - (2 - \frac{1}{2}) = 2 - 1.5 = 0.5 \] So we have: \[ \int_{1}^{2} (2-x) \log_e x \, dx = 2 \log_e 2 - (0.5) = 2 \log_e 2 - 0.5 \] ### Step 4: Evaluate the second integral \( \int_{2}^{3} (x-2) \log_e x \, dx \) Using integration by parts again: - Let \( u = \log_e x \) so \( du = \frac{1}{x} \, dx \) - Let \( dv = (x-2) \, dx \) so \( v = \frac{x^2}{2} - 2x \) Applying integration by parts: \[ \int (x-2) \log_e x \, dx = \left( \frac{x^2}{2} - 2x \right) \log_e x \bigg|_{2}^{3} - \int \left( \frac{x^2}{2} - 2x \right) \cdot \frac{1}{x} \, dx \] Calculating the boundary term: At \( x = 3 \): \[ \left( \frac{3^2}{2} - 2(3) \right) \log_e 3 = \left( \frac{9}{2} - 6 \right) \log_e 3 = \left( \frac{9}{2} - \frac{12}{2} \right) \log_e 3 = -\frac{3}{2} \log_e 3 \] At \( x = 2 \): \[ \left( \frac{2^2}{2} - 2(2) \right) \log_e 2 = (2 - 4) \log_e 2 = -2 \log_e 2 \] Thus, the boundary term contributes: \[ -\frac{3}{2} \log_e 3 + 2 \log_e 2 \] Now we evaluate the integral: \[ \int (x-2) \, dx = \frac{x^2}{2} - 2x \bigg|_{2}^{3} = \left( \frac{9}{2} - 6 \right) - \left( 2 - 4 \right) = -\frac{3}{2} - (-2) = -\frac{3}{2} + 2 = \frac{1}{2} \] So we have: \[ \int_{2}^{3} (x-2) \log_e x \, dx = \left(-\frac{3}{2} \log_e 3 + 2 \log_e 2\right) - \frac{1}{2} \] ### Step 5: Combine results Now we combine both integrals: \[ \int_{1}^{3} |(2-x) \log_e x| \, dx = \left(2 \log_e 2 - 0.5\right) + \left(-\frac{3}{2} \log_e 3 + 2 \log_e 2 - \frac{1}{2}\right) \] Combining like terms: \[ = 4 \log_e 2 - \frac{3}{2} \log_e 3 - 1 \] ### Final Result Thus, the value of the integral \( \int_{1}^{3} |(2-x) \log_e x| \, dx \) is: \[ 4 \log_e 2 - \frac{3}{2} \log_e 3 - 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^(x))^(x)(2x log_(e)x+x)dx is equal to

The value of int _(1)^(e) 10^(log_(e)x) dx is equal to

int_(1)^(x)log_(e)[x]dx

int(1)/(x)(log_(ex)e)dx is equal to

int_(1)^(x) (log(x^(2)))/(x) dx is equal to

int cos (log_e x)dx is equal to

int_(1)^(4) log_(e)[x]dx equals

int_(1)^(e)(e^(x)(x log_(e)x+1))/(x)dx is equal to

The integral int_(1)^(e){((x)/(e))^(2x)-((e)/(x))^(x)} "log"_(e)x dx is equal to