Home
Class 12
MATHS
Let I=int(-a)^(a) (p tan^(3) x + q cos^(...

Let `I=int_(-a)^(a) (p tan^(3) x + q cos^(2)x + r sin x)dx`, where p, q, r are arbitrary constants. The numerical value of I depends on:

A

p, q, r, a

B

q, r, a

C

q, a

D

p, r, a

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-a}^{a} (p \tan^3 x + q \cos^2 x + r \sin x) \, dx \), we will evaluate each term separately and analyze their contributions to the integral. ### Step 1: Evaluate \( I_1 = \int_{-a}^{a} p \tan^3 x \, dx \) 1. **Recognize the odd function**: The function \( \tan^3 x \) is an odd function because \( \tan(-x) = -\tan(x) \). Therefore, \( \tan^3(-x) = -\tan^3(x) \). 2. **Integral of an odd function**: The integral of an odd function over a symmetric interval around zero is zero. \[ I_1 = p \int_{-a}^{a} \tan^3 x \, dx = 0 \] ### Step 2: Evaluate \( I_2 = \int_{-a}^{a} q \cos^2 x \, dx \) 1. **Recognize the even function**: The function \( \cos^2 x \) is an even function because \( \cos^2(-x) = \cos^2(x) \). 2. **Use the identity**: We can use the identity \( \cos^2 x = \frac{1 + \cos(2x)}{2} \). \[ I_2 = q \int_{-a}^{a} \cos^2 x \, dx = q \int_{-a}^{a} \frac{1 + \cos(2x)}{2} \, dx \] 3. **Separate the integral**: \[ I_2 = q \left( \frac{1}{2} \int_{-a}^{a} 1 \, dx + \frac{1}{2} \int_{-a}^{a} \cos(2x) \, dx \right) \] 4. **Evaluate the integrals**: - The first integral: \( \int_{-a}^{a} 1 \, dx = 2a \). - The second integral: The integral of \( \cos(2x) \) over a symmetric interval is zero. \[ I_2 = q \left( \frac{1}{2} (2a) + 0 \right) = qa \] ### Step 3: Evaluate \( I_3 = \int_{-a}^{a} r \sin x \, dx \) 1. **Recognize the odd function**: The function \( \sin x \) is also an odd function because \( \sin(-x) = -\sin(x) \). 2. **Integral of an odd function**: The integral of an odd function over a symmetric interval around zero is zero. \[ I_3 = r \int_{-a}^{a} \sin x \, dx = 0 \] ### Final Calculation of \( I \) Combining the results: \[ I = I_1 + I_2 + I_3 = 0 + qa + 0 = qa \] ### Conclusion The numerical value of \( I \) depends on the constants \( q \) and \( a \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If I= int_(-a)^(a)(alpha sin^(5)x+beta tan^(3)x+gamma cos x)dx , where alpha,beta,gamma are constants, then the value of I depends on

int_(-2)^(2)(px^(3)+qx+r)dx, wherep,q,r are constant,depends on the value of

The differential equation of the family of cruves y = p cos (ax) + q sin (ax) , where p,q are arbitrary constants, is

The differential equation of the family of curves y = p cos (ax) + q sin (ax) , where p , q are arbitrary constants , is :

The value of the integral int((sin x)/(x))^(6)((x cos x - sin x)/(x^2)) dx is (where , c is an arbitrary constant)

int((p+q tan^(-1)x))/(1+x^(2))dx

Let a,b and c be the sides of a Delta ABC. If a^(2),b^(2) and c^(2) are the roots of the equation x^(3)-Px^(2)+Qx-R=0, where P,Q&R are constants,then find the value of (cos A)/(a)+(cos B)/(b)+(cos C)/(c) in terms of P,Q and R.

The roots of the equation (x-p) (x-q)=r^(2) where p,q , r are real , are

Let f(x)=p[x]+qe^(-[x])+r|x|^(2) , where p,q and r are real constants, If f(x) is differential at x=0. Then,