Home
Class 12
MATHS
If f(x)=ax^(3)+bx^(2)+cx have relative e...

If `f(x)=ax^(3)+bx^(2)+cx` have relative extrema x = 1 and at x = 5. If `int_(-1)^(1)f(x)dx=6` then :

A

`a=-1`

B

`b=9`

C

`c=15`

D

`a=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will follow the outlined reasoning in the video transcript. ### Step 1: Find the derivative of \( f(x) \) Given the function: \[ f(x) = ax^3 + bx^2 + cx \] We need to find the derivative \( f'(x) \) to locate the relative extrema: \[ f'(x) = 3ax^2 + 2bx + c \] ### Step 2: Set the derivative equal to zero Since we know that the relative extrema occur at \( x = 1 \) and \( x = 5 \), we can set up the following equations: 1. For \( x = 1 \): \[ f'(1) = 3a(1)^2 + 2b(1) + c = 3a + 2b + c = 0 \quad \text{(Equation 1)} \] 2. For \( x = 5 \): \[ f'(5) = 3a(5)^2 + 2b(5) + c = 75a + 10b + c = 0 \quad \text{(Equation 2)} \] ### Step 3: Set up the integral condition We are given that: \[ \int_{-1}^{1} f(x) \, dx = 6 \] Calculating the integral: \[ \int_{-1}^{1} (ax^3 + bx^2 + cx) \, dx = \left[ \frac{a}{4}x^4 + \frac{b}{3}x^3 + \frac{c}{2}x^2 \right]_{-1}^{1} \] Evaluating the limits: \[ = \left( \frac{a}{4}(1)^4 + \frac{b}{3}(1)^3 + \frac{c}{2}(1)^2 \right) - \left( \frac{a}{4}(-1)^4 + \frac{b}{3}(-1)^3 + \frac{c}{2}(-1)^2 \right) \] \[ = \left( \frac{a}{4} + \frac{b}{3} + \frac{c}{2} \right) - \left( \frac{a}{4} - \frac{b}{3} + \frac{c}{2} \right) \] \[ = \frac{b}{3} + \frac{b}{3} = \frac{2b}{3} \] Setting this equal to 6: \[ \frac{2b}{3} = 6 \implies 2b = 18 \implies b = 9 \quad \text{(Equation 3)} \] ### Step 4: Substitute \( b \) into the equations Now we substitute \( b = 9 \) into Equations 1 and 2. 1. From Equation 1: \[ 3a + 2(9) + c = 0 \implies 3a + 18 + c = 0 \implies 3a + c = -18 \quad \text{(Equation 4)} \] 2. From Equation 2: \[ 75a + 10(9) + c = 0 \implies 75a + 90 + c = 0 \implies 75a + c = -90 \quad \text{(Equation 5)} \] ### Step 5: Solve the system of equations Now we have two equations (4 and 5): 1. \( 3a + c = -18 \) 2. \( 75a + c = -90 \) Subtract Equation 4 from Equation 5: \[ (75a + c) - (3a + c) = -90 + 18 \] \[ 72a = -72 \implies a = -1 \] ### Step 6: Find \( c \) Substituting \( a = -1 \) back into Equation 4: \[ 3(-1) + c = -18 \implies -3 + c = -18 \implies c = -15 \] ### Summary of results We have: - \( a = -1 \) - \( b = 9 \) - \( c = -15 \) ### Final Answer The values are: - \( a = -1 \) - \( b = 9 \) - \( c = -15 \)
Promotional Banner

Similar Questions

Explore conceptually related problems

If f (x)=a ln |x| +bx^(2) +x has extremas at x=1and x=3 then:

If f(x)=a log x+ bx^(2) +x has extrema at x=1 ans x =2 then (6a, 6b)-=..

If int(dx)/(x^(2)+ax+1)=f(g(x))+c, then

If : x(x^(4)+1).f(x)=1 , then : int_(1)^(2)f(x)dx=

if f(x) = a+bx +cx^(2) , then what is int_(0)^(1)f(x) dx equal to ?

If f(x)=Ax^(2)+Bx satisfies the conditions f'(1)=8 and int_(0)^(1)f(x)dx=(8)/(3), then