Home
Class 12
MATHS
int(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx...

`int_(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx`, where [.] denotes the greatest integer function, is equal to:

A

`10 pi` - sec1

B

`10pi +` secl

C

`10pi - secl + cotl`

D

secl + cotl

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{1}^{10\pi} \left( \lfloor \sec^{-1} x \rfloor + \lfloor \cot^{-1} x \rfloor \right) dx \), where \( \lfloor . \rfloor \) denotes the greatest integer function, we can break it down into two parts: 1. **Evaluate \( \int_{1}^{10\pi} \lfloor \sec^{-1} x \rfloor dx \)** 2. **Evaluate \( \int_{1}^{10\pi} \lfloor \cot^{-1} x \rfloor dx \)** ### Step 1: Evaluate \( \int_{1}^{10\pi} \lfloor \sec^{-1} x \rfloor dx \) **Finding the range of \( \sec^{-1} x \):** - The function \( \sec^{-1} x \) is defined for \( x \geq 1 \). - As \( x \) increases from 1 to \( 10\pi \), \( \sec^{-1} x \) increases from \( \sec^{-1}(1) = 0 \) to \( \sec^{-1}(10\pi) \). **Finding the value of \( \sec^{-1}(10\pi) \):** - Since \( 10\pi \) is a large number, we can approximate \( \sec^{-1}(10\pi) \) as a large angle, which will be greater than \( \frac{\pi}{2} \). **Identifying the greatest integer values:** - For \( x \) in the interval \( [1, \sec(1)] \), \( \lfloor \sec^{-1} x \rfloor = 0 \). - For \( x \) in the interval \( [\sec(1), 10\pi] \), \( \lfloor \sec^{-1} x \rfloor = 1 \). **Calculating the integral:** - The integral can be split as follows: \[ \int_{1}^{10\pi} \lfloor \sec^{-1} x \rfloor dx = \int_{1}^{\sec(1)} 0 \, dx + \int_{\sec(1)}^{10\pi} 1 \, dx \] - The first integral evaluates to \( 0 \). - The second integral evaluates to: \[ \int_{\sec(1)}^{10\pi} 1 \, dx = 10\pi - \sec(1) \] ### Step 2: Evaluate \( \int_{1}^{10\pi} \lfloor \cot^{-1} x \rfloor dx \) **Finding the range of \( \cot^{-1} x \):** - The function \( \cot^{-1} x \) is defined for all \( x > 0 \). - As \( x \) increases from 1 to \( 10\pi \), \( \cot^{-1} x \) decreases from \( \cot^{-1}(1) = \frac{\pi}{4} \) to \( \cot^{-1}(10\pi) \) which approaches \( 0 \). **Identifying the greatest integer values:** - For \( x \) in the interval \( [1, 10\pi] \), \( \lfloor \cot^{-1} x \rfloor \) will be \( 0 \) for all \( x \) since \( \cot^{-1}(1) = \frac{\pi}{4} \approx 0.785 \) and \( \cot^{-1}(10\pi) \) is less than \( 1 \). **Calculating the integral:** - Thus, we have: \[ \int_{1}^{10\pi} \lfloor \cot^{-1} x \rfloor dx = \int_{1}^{10\pi} 0 \, dx = 0 \] ### Final Calculation Combining both parts: \[ I = \int_{1}^{10\pi} \lfloor \sec^{-1} x \rfloor dx + \int_{1}^{10\pi} \lfloor \cot^{-1} x \rfloor dx = (10\pi - \sec(1)) + 0 = 10\pi - \sec(1) \] ### Conclusion The value of the integral is: \[ \int_{1}^{10\pi} \left( \lfloor \sec^{-1} x \rfloor + \lfloor \cot^{-1} x \rfloor \right) dx = 10\pi - \sec(1) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

int_(1)^(10 pi)([sec^(-1)x]+[cot^(-1)x]dx where [.] denotes the greatest integer function is (A) 10 pi-sec1(B)10 pi+sec1(C)10 pi-sec1+cot1(D)sec1+cot1

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

int_(-1)^(1)[x^(2)-x+1]dx, where [.] denotes thegreatest integer function,is equal to

int_(-1)^(1)[cos^(-1)x]dx (where [.] denotes greatest integer function)

The value of int_(1)^(2)(x^([x^(2)])+[x^(2)]^(x))dx, where [.] denotes the greatest integer function,is equal to