Home
Class 12
MATHS
If I(n)=overset(pi//4)underset(0)int tan...

If `I_(n)=overset(pi//4)underset(0)int tan ^(n) x dx, lim_(n to oo) n(I_(n+1)+I_(n-1))` equals

A

`(1)/(2)`

B

1

C

`oo`

D

zero

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(pi//4) tan^(n) x dx, lim_(n to oo) n(I_(n+1)+I_(n-1)) equals

l_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(nto oo)n[l_(n)+l_(n-2)] equals

Let I_(n) = overset(pi//4)underset(0)int tan^(n) x dx." Then "I_(2)+I_(4),I_(3)+I_(5),I_(4)+I_(6),I_(5)+I_(7),…. are in

lim_(n to oo) (3^(n)+4^(n))^(1//n) is equal to

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

If I_(n) int_(0)^(4) x dx then what is I_(n) + I_(n-2) equal to ?

I_n=int_0^(pi//4) tan^n x dx, then lim_(ntooo) n [I_n + I_(n+2)] is equal to (i)1/2 (ii)1 (iii)infty (iv) 0

If I_(n)=int sin^(n)x backslash dx, then nI_(n)-(n-1)I_(n-2) equals

I_(n)=int_(0)^((pi)/(4))tan^(n)xdx, then the value of n(l_(n-1)+I_(n+1)) is