Home
Class 12
MATHS
If I(1) = int(0)^(pi//2)ln (sin x)dx , I...

If `I_(1) = int_(0)^(pi//2)ln (sin x)dx , I_(2)=int_(-pi//4)^(pi//4)ln (sin x + cos x)dx`, then :

A

`I_(1)=2I_(2)`

B

`I_(2)=2I_(1)`

C

`I_(1)=4I_(2)`

D

`I_(2)=4I_(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and establish a relationship between them. ### Step 1: Evaluate \( I_1 \) Given: \[ I_1 = \int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx \] Using the property of definite integrals: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] we can rewrite \( I_1 \): \[ I_1 = \int_{0}^{\frac{\pi}{2}} \ln(\sin(\frac{\pi}{2} - x)) \, dx = \int_{0}^{\frac{\pi}{2}} \ln(\cos x) \, dx \] Now, we can add the two expressions for \( I_1 \): \[ 2I_1 = \int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx + \int_{0}^{\frac{\pi}{2}} \ln(\cos x) \, dx \] Using the property of logarithms: \[ 2I_1 = \int_{0}^{\frac{\pi}{2}} \ln(\sin x \cos x) \, dx \] Using the identity \( \sin x \cos x = \frac{1}{2} \sin(2x) \): \[ 2I_1 = \int_{0}^{\frac{\pi}{2}} \ln\left(\frac{1}{2} \sin(2x)\right) \, dx \] This can be split into two integrals: \[ 2I_1 = \int_{0}^{\frac{\pi}{2}} \ln\left(\frac{1}{2}\right) \, dx + \int_{0}^{\frac{\pi}{2}} \ln(\sin(2x)) \, dx \] Calculating the first integral: \[ \int_{0}^{\frac{\pi}{2}} \ln\left(\frac{1}{2}\right) \, dx = \ln\left(\frac{1}{2}\right) \cdot \frac{\pi}{2} = -\frac{\pi}{2} \ln(2) \] For the second integral, we change variables \( u = 2x \) (thus \( dx = \frac{du}{2} \)): \[ \int_{0}^{\frac{\pi}{2}} \ln(\sin(2x)) \, dx = \frac{1}{2} \int_{0}^{\pi} \ln(\sin u) \, du \] Using the known result \( \int_{0}^{\pi} \ln(\sin u) \, du = -\pi \ln(2) \): \[ \int_{0}^{\frac{\pi}{2}} \ln(\sin(2x)) \, dx = \frac{1}{2} (-\pi \ln(2)) = -\frac{\pi}{2} \ln(2) \] Putting it all together: \[ 2I_1 = -\frac{\pi}{2} \ln(2) - \frac{\pi}{2} \ln(2) = -\pi \ln(2) \] Thus: \[ I_1 = -\frac{\pi}{2} \ln(2) \] ### Step 2: Evaluate \( I_2 \) Given: \[ I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\sin x + \cos x) \, dx \] Using the property of definite integrals: \[ I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\sin(-x) + \cos(-x)) \, dx = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(-\sin x + \cos x) \, dx \] This can be rewritten as: \[ I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\cos x - \sin x) \, dx \] Now, we can add both expressions for \( I_2 \): \[ 2I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left( \ln(\sin x + \cos x) + \ln(\cos x - \sin x) \right) \, dx \] Using the property of logarithms: \[ 2I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln((\sin x + \cos x)(\cos x - \sin x)) \, dx \] Calculating the product: \[ (\sin x + \cos x)(\cos x - \sin x) = \cos^2 x - \sin^2 x = \cos(2x) \] Thus: \[ 2I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\cos(2x)) \, dx \] Using the known result: \[ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\cos(2x)) \, dx = \frac{\pi}{4} \ln(2) \] So: \[ 2I_2 = \frac{\pi}{4} \ln(2) \implies I_2 = \frac{\pi}{8} \ln(2) \] ### Step 3: Establish the relationship between \( I_1 \) and \( I_2 \) From our calculations: \[ I_1 = -\frac{\pi}{2} \ln(2) \] \[ I_2 = \frac{\pi}{8} \ln(2) \] Now, we can express \( I_1 \) in terms of \( I_2 \): \[ I_1 = -4I_2 \] ### Conclusion Thus, we have established that: \[ I_1 = 2I_2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))log(sin x)dx

If I_(1)=int_(0)^(pi//2)log (sin x)dx and I_(2)=int_(0)^(pi//2)log (sin 2x)dx , then

int_(0)^((pi)/(2))log(sin2x)dx

If I_(1)=int_(0)^(pi//2)"x.sin x dx" and I_(2)=int_(0)^(pi//2)"x.cos x dx" , then

Evaluate: int_(-pi/4)^( pi/4)log(sin x+cos x)dx

int_(0)^( pi)cos2x*log(sin x)dx

int_(0)^(pi)log sin^(2)x dx=

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then

int_(0)^( pi/2)ln(sin^(2)x cos x)dx