To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and establish a relationship between them.
### Step 1: Evaluate \( I_1 \)
Given:
\[
I_1 = \int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx
\]
Using the property of definite integrals:
\[
\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx
\]
we can rewrite \( I_1 \):
\[
I_1 = \int_{0}^{\frac{\pi}{2}} \ln(\sin(\frac{\pi}{2} - x)) \, dx = \int_{0}^{\frac{\pi}{2}} \ln(\cos x) \, dx
\]
Now, we can add the two expressions for \( I_1 \):
\[
2I_1 = \int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx + \int_{0}^{\frac{\pi}{2}} \ln(\cos x) \, dx
\]
Using the property of logarithms:
\[
2I_1 = \int_{0}^{\frac{\pi}{2}} \ln(\sin x \cos x) \, dx
\]
Using the identity \( \sin x \cos x = \frac{1}{2} \sin(2x) \):
\[
2I_1 = \int_{0}^{\frac{\pi}{2}} \ln\left(\frac{1}{2} \sin(2x)\right) \, dx
\]
This can be split into two integrals:
\[
2I_1 = \int_{0}^{\frac{\pi}{2}} \ln\left(\frac{1}{2}\right) \, dx + \int_{0}^{\frac{\pi}{2}} \ln(\sin(2x)) \, dx
\]
Calculating the first integral:
\[
\int_{0}^{\frac{\pi}{2}} \ln\left(\frac{1}{2}\right) \, dx = \ln\left(\frac{1}{2}\right) \cdot \frac{\pi}{2} = -\frac{\pi}{2} \ln(2)
\]
For the second integral, we change variables \( u = 2x \) (thus \( dx = \frac{du}{2} \)):
\[
\int_{0}^{\frac{\pi}{2}} \ln(\sin(2x)) \, dx = \frac{1}{2} \int_{0}^{\pi} \ln(\sin u) \, du
\]
Using the known result \( \int_{0}^{\pi} \ln(\sin u) \, du = -\pi \ln(2) \):
\[
\int_{0}^{\frac{\pi}{2}} \ln(\sin(2x)) \, dx = \frac{1}{2} (-\pi \ln(2)) = -\frac{\pi}{2} \ln(2)
\]
Putting it all together:
\[
2I_1 = -\frac{\pi}{2} \ln(2) - \frac{\pi}{2} \ln(2) = -\pi \ln(2)
\]
Thus:
\[
I_1 = -\frac{\pi}{2} \ln(2)
\]
### Step 2: Evaluate \( I_2 \)
Given:
\[
I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\sin x + \cos x) \, dx
\]
Using the property of definite integrals:
\[
I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\sin(-x) + \cos(-x)) \, dx = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(-\sin x + \cos x) \, dx
\]
This can be rewritten as:
\[
I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\cos x - \sin x) \, dx
\]
Now, we can add both expressions for \( I_2 \):
\[
2I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left( \ln(\sin x + \cos x) + \ln(\cos x - \sin x) \right) \, dx
\]
Using the property of logarithms:
\[
2I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln((\sin x + \cos x)(\cos x - \sin x)) \, dx
\]
Calculating the product:
\[
(\sin x + \cos x)(\cos x - \sin x) = \cos^2 x - \sin^2 x = \cos(2x)
\]
Thus:
\[
2I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\cos(2x)) \, dx
\]
Using the known result:
\[
\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\cos(2x)) \, dx = \frac{\pi}{4} \ln(2)
\]
So:
\[
2I_2 = \frac{\pi}{4} \ln(2) \implies I_2 = \frac{\pi}{8} \ln(2)
\]
### Step 3: Establish the relationship between \( I_1 \) and \( I_2 \)
From our calculations:
\[
I_1 = -\frac{\pi}{2} \ln(2)
\]
\[
I_2 = \frac{\pi}{8} \ln(2)
\]
Now, we can express \( I_1 \) in terms of \( I_2 \):
\[
I_1 = -4I_2
\]
### Conclusion
Thus, we have established that:
\[
I_1 = 2I_2
\]