Home
Class 12
MATHS
The value of int(0)^(1000)e^(x-[x])dx, i...

The value of `int_(0)^(1000)e^(x-[x])dx`, is ([.] denotes the greatest integer function) :

A

1000 e

B

1000 (e - 1)

C

1001 (e - 1)

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1000} e^{x - [x]} \, dx \), where \([x]\) denotes the greatest integer function, we can break the integral into segments based on the behavior of the greatest integer function. ### Step 1: Understanding the Greatest Integer Function The greatest integer function \([x]\) gives the largest integer less than or equal to \(x\). For any integer \(n\), in the interval \(n \leq x < n+1\), we have \([x] = n\). ### Step 2: Breaking the Integral We can break the integral from \(0\) to \(1000\) into \(1000\) segments: \[ I = \sum_{n=0}^{999} \int_{n}^{n+1} e^{x - n} \, dx \] This is because in each interval \([n, n+1)\), \([x] = n\). ### Step 3: Simplifying the Integral Now we simplify the integral: \[ I = \sum_{n=0}^{999} \int_{n}^{n+1} e^{x - n} \, dx = \sum_{n=0}^{999} e^{-n} \int_{n}^{n+1} e^{x} \, dx \] The integral \(\int_{n}^{n+1} e^{x} \, dx\) can be computed as follows: \[ \int e^{x} \, dx = e^{x} + C \] Thus, \[ \int_{n}^{n+1} e^{x} \, dx = e^{n+1} - e^{n} = e^{n}(e - 1) \] ### Step 4: Substituting Back Now substituting back into the sum: \[ I = \sum_{n=0}^{999} e^{-n} (e^{n}(e - 1)) = (e - 1) \sum_{n=0}^{999} 1 = (e - 1) \cdot 1000 \] ### Step 5: Final Calculation Thus, we have: \[ I = 1000(e - 1) \] ### Step 6: Applying the Greatest Integer Function Since the question asks for the value of \(I\) in terms of the greatest integer function, we need to find: \[ \lfloor I \rfloor = \lfloor 1000(e - 1) \rfloor \] Using \(e \approx 2.718\), we calculate: \[ e - 1 \approx 1.718 \implies 1000(e - 1) \approx 1718 \] Thus, \[ \lfloor 1000(e - 1) \rfloor = 1718 \] ### Final Answer The value of \( \int_{0}^{1000} e^{x - [x]} \, dx \) is: \[ \lfloor I \rfloor = 1718 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(5)e^([x])dx is (where [.] denotes the greatest integer function)

The value of int_(0)^(100)sin(x-[x])pi dx is Here [.] denotes greatest integer function

The value of int_(0)^(2017)sin(x-[x])dx : (where [ . ] denotes the greatest integer function) is equal to

Find the value of : int_(0)^(10)e^(2x-[2x])d(x-[x]) where [.] denotes the greatest integer function).

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to S

The value of int_(0)^(2)[x^(2)-x+1]dx (where,[*] denotes the greatest integer function) is equal to

The value of int_(-1)^(1)(x-[x])dx , (where [.] denotes greatest integer function)is

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to