Home
Class 12
MATHS
The value of lim(n to oo)((1)/(1^(3)+n^(...

The value of `lim_(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+..........+(n^(2))/(n^(3)+n^(3)))` is :

A

`(1)/(3)`

B

`(1)/(3)log(2)`

C

`(1)/(2)log(3)`

D

`(1)/(3)log(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \left( \frac{1}{1^3 + n^3} + \frac{2^2}{2^3 + n^3} + \cdots + \frac{n^2}{n^3 + n^3} \right), \] we can express the limit in a more manageable form. ### Step 1: Rewrite the expression The expression can be rewritten as: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^2}{k^3 + n^3}. \] ### Step 2: Factor out \(n^3\) from the denominator We can factor \(n^3\) from the denominator: \[ = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^2}{n^3 \left(\frac{k^3}{n^3} + 1\right)} = \lim_{n \to \infty} \frac{1}{n^3} \sum_{k=1}^{n} \frac{k^2}{\left(\frac{k}{n}\right)^3 + 1}. \] ### Step 3: Change the variable Let \(x = \frac{k}{n}\), then \(k = nx\) and \(dk = n \, dx\). The sum can be approximated by an integral as \(n\) approaches infinity: \[ \sum_{k=1}^{n} \frac{k^2}{\left(\frac{k}{n}\right)^3 + 1} \approx n \int_{0}^{1} \frac{(nx)^2}{x^3 + 1} \, dx. \] ### Step 4: Substitute back into the limit Substituting this back into our limit gives: \[ \lim_{n \to \infty} \frac{1}{n^3} n \int_{0}^{1} \frac{(nx)^2}{x^3 + 1} \, dx = \lim_{n \to \infty} \frac{n^2}{n^3} \int_{0}^{1} \frac{(nx)^2}{x^3 + 1} \, dx = \lim_{n \to \infty} \frac{1}{n} \int_{0}^{1} \frac{n^2 x^2}{x^3 + 1} \, dx. \] ### Step 5: Evaluate the integral Now we can evaluate the integral: \[ \int_{0}^{1} \frac{n^2 x^2}{x^3 + 1} \, dx. \] As \(n\) approaches infinity, we can factor out \(n^2\): \[ = n^2 \int_{0}^{1} \frac{x^2}{x^3 + 1} \, dx. \] ### Step 6: Final limit Thus, the limit simplifies to: \[ \lim_{n \to \infty} \frac{1}{n} \cdot n^2 \cdot \int_{0}^{1} \frac{x^2}{x^3 + 1} \, dx = \lim_{n \to \infty} n \cdot \int_{0}^{1} \frac{x^2}{x^3 + 1} \, dx. \] Since \(\int_{0}^{1} \frac{x^2}{x^3 + 1} \, dx\) is a constant, the limit approaches \(0\). ### Conclusion Thus, the value of the limit is: \[ \boxed{0}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+....+(1)/(2n))

lim_(n rarr oo)[(1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(3))+...+(n^(2))/(n^(3))]=?

Evaluate lim _( x to oo) ((1^(2) )/(n ^(3) +1 ^(3))+(2 ^(2))/(n ^(3) +2 ^(3)) + (3 ^(2))/(n ^(3)+ 3 ^(3))+ .... + (4)/(9n)).

The value of lim_(xto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

The value of lim_(x to oo) (1 + 2 + 3 … + n)/(n^(2)) is

lim (n rarr oo) (1 ^ (2) + 2 ^ (2) + 3 ^ (3) + ......... + n ^ (2)) / (n ^ (3))

The value of lim_(n rarr oo)(sqrt(3n^(2)-1)-sqrt(2n^(2)-1))/(4n+3) is

Evaluate: lim_(n rarr oo)((1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(4))+...+(1)/(n))

lim_(n rarr oo)(n^(2)(1^(3)+2^(3)+...+n^(3)))/((1^(2)+2^(2)+......+n^(2))^(2))