Home
Class 12
MATHS
The value of lim(n to oo)[(n)/(n^(2))+(n...

The value of `lim_(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+...+(n)/(n^(2)+(n-1)^(2))]` is :

A

`(pi)/(2)`

B

`(pi)/(4)`

C

`pi`

D

`-(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \left[ \frac{n}{n^2} + \frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \ldots + \frac{n}{n^2 + (n-1)^2} \right], \] we can break down the solution step by step. ### Step 1: Rewrite the expression The limit can be rewritten as: \[ \lim_{n \to \infty} \sum_{r=0}^{n-1} \frac{n}{n^2 + r^2}. \] ### Step 2: Factor out \( n \) We can factor \( n \) out of the denominator: \[ \frac{n}{n^2 + r^2} = \frac{n}{n^2(1 + \frac{r^2}{n^2})} = \frac{1}{n(1 + \frac{r^2}{n^2})}. \] Thus, the sum becomes: \[ \lim_{n \to \infty} \sum_{r=0}^{n-1} \frac{1}{n(1 + \frac{r^2}{n^2})}. \] ### Step 3: Change the sum to an integral As \( n \to \infty \), we can interpret the sum as a Riemann sum. Let \( x = \frac{r}{n} \), then \( r = nx \) and \( \frac{dr}{n} = dx \). The limits for \( r \) from \( 0 \) to \( n-1 \) correspond to \( x \) from \( 0 \) to \( 1 - \frac{1}{n} \), which approaches \( 0 \) to \( 1 \) as \( n \to \infty \). The sum can be approximated by the integral: \[ \int_0^1 \frac{1}{1 + x^2} \, dx. \] ### Step 4: Evaluate the integral The integral \[ \int_0^1 \frac{1}{1 + x^2} \, dx \] is a standard integral, which evaluates to: \[ \left[ \tan^{-1}(x) \right]_0^1 = \tan^{-1}(1) - \tan^{-1}(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4}. \] ### Step 5: Conclusion Thus, the value of the limit is: \[ \lim_{n \to \infty} \left[ \frac{n}{n^2} + \frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \ldots + \frac{n}{n^2 + (n-1)^2} \right] = \frac{\pi}{4}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n to oo ) {(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+ (n)/(n^(2)+n^(2))} is equal to

lim_(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

The value of lim_( n to oo) ((1)/(n) + (n)/((n+1)^2) + (n)/( (n+2)^2) + ...+ (n)/( (2n-1)^2) ) is

The value of lim_(n rarr oo)[(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))++(1)/(2n)] is

lim_(n rarr oo)[(1)/(n^(2))+(2)/(n^(2))+....+(n)/(n^(2))]

The value of lim_(ntooo)[n/(n^(2)+1^(2))+n/(n^(2)+2^(2))+………….+n/(n^(2)+n^(2))] , is

lim_(n to oo)[(n)/(1+n^(2))+(n)/(4+n^(2))+(n)/(9+n^(2))+…+(1)/(2n^2)]=

lim_(n rarr oo)(e^(2n)(n!)^(2))/(2n^(2n+1))