Home
Class 12
MATHS
The value of lim(n->oo) [(1+1/n^2)(1+2^2...

The value of `lim_(n->oo) [(1+1/n^2)(1+2^2/n^2)...(1+n^2/n^2)]^(1/n)`

A

`2e^((pi-4)//2)`

B

`2e^(pi)`

C

2e

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo)[(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))++(1)/(2n)] is

The value of lim_ (n rarr oo) [(1+ (1) / (n ^ (2))) (1+ (2 ^ (2)) / (n ^ (2))) ... (1+ (n ^ (2)) / (n ^ (2)))] ^ ((1) / (n))

The value of lim_(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+...+(n)/(n^(2)+(n-1)^(2))] is :

The value of lim_(n rarr oo)(((2n)(2n+1)(2n+2)...(4n))^((1)/(n)))/((n)^(2+(1)/(n))) is

The value of lim_( n to oo) ((1)/(n) + (n)/((n+1)^2) + (n)/( (n+2)^2) + ...+ (n)/( (2n-1)^2) ) is

The value of lim_ (n rarr oo) [(1) / (n) + (e ^ ((1) / (n))) / (n) + (e ^ ((2) / (n))) / (n) + .... + (e ^ ((n-1) / (n))) / (n)] is:

lim_(n->oo) (1)/(n^(6)){(n+1)^(5)+(n+2)^(5)+...+(2n)^(5)}

The value of lim_(x to oo) (1 + 2 + 3 … + n)/(n^(2)) is

lim_(n rarr oo) (1^2/(1-n^3)+2^2/(1-n^3)+...+n^2/(1-n^3))=