Home
Class 12
MATHS
lim(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+s...

`lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]`

A

`(2)/(3)(2sqrt(2)+1)`

B

`(2)/(3)(2sqrt(2)-1)`

C

`(2)/(3)(sqrt(2)-1)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo)(sqrt(1)+sqrt(2)+sqrt(3)+....+2sqrt(n))/(n sqrt(n)) is

lim_(n rarr oo)(sqrt(n+1)-sqrt(n))=0

lim_(n rarr oo) sqrt(n)/sqrt(n+1)=

lim_(n rarr oo)(sqrt(n+1)+sqrt(n+2)+.........+sqrt(2n-1))/(n^((3)/(2) ))

Evaluate : lim_(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2)(3sqrt(2)+4sqrt(n))^(2))+(sqrt(n))/(sqrt(3)(3sqrt(3)+4sqrt(n))^(2))+.......+(1)/(49n)]

lim_(n rarr oo)(1+sqrt(n))/(1-sqrt(n))

lim_(ntooo)(n-sqrt(n^(2)+n))

lim_(n rarr oo)((sqrt(n+3)-sqrt(n+2))/(sqrt(n+2)-sqrt(n+1)))