Home
Class 12
MATHS
The value of lim(n to oo)sum(r=1)^(n)(1)...

The value of `lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r)))` is :

A

`(pi)/(2)-2`

B

`(pi)/(2)+2`

C

`(pi)/(2)-1`

D

`(pi)/(2)+1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} \sqrt{\frac{n+r}{n-r}}, \] we can follow these steps: ### Step 1: Rewrite the expression inside the limit We start by rewriting the expression inside the limit: \[ \sqrt{\frac{n+r}{n-r}} = \sqrt{\frac{n(1 + \frac{r}{n})}{n(1 - \frac{r}{n})}} = \sqrt{\frac{1 + \frac{r}{n}}{1 - \frac{r}{n}}}. \] Thus, we can rewrite the limit as: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} \sqrt{\frac{1 + \frac{r}{n}}{1 - \frac{r}{n}}}. \] ### Step 2: Recognize the Riemann sum As \( n \to \infty \), the term \( \frac{r}{n} \) can be treated as a variable \( x \) where \( x = \frac{r}{n} \). The sum can be interpreted as a Riemann sum for the function \( f(x) = \sqrt{\frac{1+x}{1-x}} \) over the interval from \( 0 \) to \( 1 \): \[ \sum_{r=1}^{n} \frac{1}{n} f\left(\frac{r}{n}\right) \to \int_0^1 f(x) \, dx. \] ### Step 3: Set up the integral Thus, we can express our limit as: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} \sqrt{\frac{1 + \frac{r}{n}}{1 - \frac{r}{n}}} = \int_0^1 \sqrt{\frac{1+x}{1-x}} \, dx. \] ### Step 4: Solve the integral To solve the integral \[ \int_0^1 \sqrt{\frac{1+x}{1-x}} \, dx, \] we can rationalize the integrand: \[ \sqrt{\frac{1+x}{1-x}} = \frac{\sqrt{(1+x)(1+x)}}{\sqrt{(1-x)(1+x)}} = \frac{1+x}{\sqrt{1-x^2}}. \] Thus, the integral becomes: \[ \int_0^1 \frac{1+x}{\sqrt{1-x^2}} \, dx = \int_0^1 \frac{1}{\sqrt{1-x^2}} \, dx + \int_0^1 \frac{x}{\sqrt{1-x^2}} \, dx. \] ### Step 5: Evaluate the two integrals 1. The first integral: \[ \int_0^1 \frac{1}{\sqrt{1-x^2}} \, dx = \frac{\pi}{2}. \] 2. The second integral can be solved using the substitution \( x = \sin(\theta) \): \[ \int_0^1 \frac{x}{\sqrt{1-x^2}} \, dx = \int_0^{\frac{\pi}{2}} \sin(\theta) \, d\theta = 1. \] ### Step 6: Combine the results Combining both results, we have: \[ \int_0^1 \sqrt{\frac{1+x}{1-x}} \, dx = \frac{\pi}{2} + 1. \] ### Conclusion Thus, the final result is: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} \sqrt{\frac{n+r}{n-r}} = \frac{\pi}{2} + 1. \] ### Final Answer The value of the limit is: \[ \frac{\pi}{2} + 1. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

m sum_(r=1)^(n)(1)/(n)sqrt((n+r)/(n-r))

The value of lim_(n rarr oo)sum_(r=1)^(n)(1)/(sqrt(n^(2)-r^(2)x^(2))) is

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

What is the value of,Lt_(n rarr oo)sum_(r=1)^(n)(1)/(n)e^((r)/(n))

The value of lim_(n rarr oo)sum_(r=n^(2))^(n^(2)+9+6n)(1)/(sqrt(r)) is equal to

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))