Home
Class 12
MATHS
The value of lim(n->oo)(sqrt(1)+sqrt(2)+...

The value of `lim_(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+2sqrt(n))/(nsqrt(n))` is

A

`2//3`

B

`1//2`

C

`1//3`

D

`3//2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo)(sqrt(1)+sqrt(2)+sqrt(3)+....+2sqrt(n))/(n sqrt(n)) is

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

lim_(n rarr oo)[(sqrt(1)+2sqrt(2)+3sqrt(3)+ .......... +nsqrt(n))/(n^(5/2))]

lim_(n rarr oo)(sqrt(n+1)-sqrt(n))=0

The value of lim_(xrarroo)(sqrt(n^2+1)+sqrt(n))/(4sqrt(n^4+n)+4sqrt(n)) , is

The value of : lim_(ntooo)((1)/(sqrtn sqrt(n+1))+(1)/(sqrtn sqrt(n+2))+ (1)/(sqrtn sqrt(n +3)) + ...... +(1)/(sqrtn sqrt(2n))) is:

The value of lim_(n rarr oo)(sqrt(3n^(2)-1)-sqrt(2n^(2)-1))/(4n+3) is

The value of lim_(n rarr oo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^(2)) is equal to (1)/(35) (b) (1)/(4)(c)(1)/(10) (d) (1)/(5)