Home
Class 12
MATHS
If int1^x (dt)/(|t|sqrt(t^2-1))=pi/6 the...

If `int_1^x (dt)/(|t|sqrt(t^2-1))=pi/6` then `x` can be equal to

A

`2//sqrt(3)`

B

`sqrt(3)`

C

2

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(ln2)^(x)(dt)/(sqrt(e^(t)-1))=(pi)/(6), then x=

(1)/(2)int(dt)/(t sqrt(t-1))

" (a) "int(dt)/(sqrt(1-t^(2)))

If lim_(x rarr0)int_(0)^(x)(t^(2)dt)/((x-sin x)sqrt(a+t))=1, then a is equal to

If y=int_(0)^(x)(t^(2))/(sqrt(t^(2)+1))dt then rate of change of y with respect to x when x=1 is

If : int_(ln 2)^(x)(1)/(sqrt(e^(t)-1))dt=(pi)/(6) , then : x =

If int_(0)^(x^(2)) sqrt(1=t^(2)) dt, then f'(x)n equals

int_(0)^(1)t^(5)*sqrt(1-t^(2))*dt