Home
Class 12
MATHS
If f(x)=cos - int0^x (x-t) \ f(t)\ dt, t...

If `f(x)=cos - int_0^x (x-t) \ f(t)\ dt`, then `f''(x) + f(x)` equals

A

`-cos x`

B

0

C

`int_(0)^(t)(x-t)f(t)dt`

D

`-int_(0)^(t)(x-t)f(t)dt`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos x-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

If f(x)=cos x-int_(0)^(x)(x-t)f(t)dt, thenf '(x)+f(x) is equal to (a)-cos x(b)-sin x(c)int_(0)^(x)(x-t)f(t)dt (d) 0

If f(x) = int_(0)^(x)t sin t dt , then f'(x) is

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If f(x) =int_(x)^(-1) |t|dt , then for any x ge 0 , f(x) equals

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to