Home
Class 12
MATHS
lim(x to 0)(int(0)^(x^(2))(tan^(-1)t)dt)...

`lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt)` is equal to :

A

1

B

`-1`

C

`-1//2`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{\int_{0}^{x^2} \tan^{-1}(t) \, dt}{\int_{0}^{x^2} \sin(\sqrt{t}) \, dt}, \] we first need to evaluate the behavior of both the numerator and the denominator as \( x \) approaches 0. ### Step 1: Evaluate the limits of the numerator and denominator As \( x \to 0 \), both \( \int_{0}^{x^2} \tan^{-1}(t) \, dt \) and \( \int_{0}^{x^2} \sin(\sqrt{t}) \, dt \) approach 0. Thus, we have an indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \] if the limit on the right-hand side exists. We differentiate the numerator and denominator with respect to \( x \). ### Step 3: Differentiate the numerator Using the Fundamental Theorem of Calculus and the chain rule, we differentiate the numerator: \[ \frac{d}{dx} \left( \int_{0}^{x^2} \tan^{-1}(t) \, dt \right) = \tan^{-1}(x^2) \cdot \frac{d}{dx}(x^2) = \tan^{-1}(x^2) \cdot 2x. \] ### Step 4: Differentiate the denominator Similarly, we differentiate the denominator: \[ \frac{d}{dx} \left( \int_{0}^{x^2} \sin(\sqrt{t}) \, dt \right) = \sin(\sqrt{x^2}) \cdot \frac{d}{dx}(x^2) = \sin(x) \cdot 2x. \] ### Step 5: Rewrite the limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to 0} \frac{\tan^{-1}(x^2) \cdot 2x}{\sin(x) \cdot 2x}. \] We can cancel \( 2x \) from the numerator and denominator (as long as \( x \neq 0 \)): \[ \lim_{x \to 0} \frac{\tan^{-1}(x^2)}{\sin(x)}. \] ### Step 6: Evaluate the new limit As \( x \to 0 \), \( \tan^{-1}(x^2) \) approaches \( \tan^{-1}(0) = 0 \) and \( \sin(x) \) approaches \( \sin(0) = 0 \), which is again an indeterminate form \( \frac{0}{0} \). We apply L'Hôpital's Rule again. ### Step 7: Differentiate again Differentiate the numerator and denominator again: 1. The derivative of \( \tan^{-1}(x^2) \) is \( \frac{2x}{1 + (x^2)^2} = \frac{2x}{1 + x^4} \). 2. The derivative of \( \sin(x) \) is \( \cos(x) \). Thus, we have: \[ \lim_{x \to 0} \frac{\frac{2x}{1 + x^4}}{\cos(x)}. \] ### Step 8: Evaluate the limit Now substituting \( x = 0 \): \[ \frac{2 \cdot 0}{1 + 0^4} \cdot \frac{1}{\cos(0)} = \frac{0}{1} = 0. \] ### Conclusion Therefore, the final result is: \[ \lim_{x \to 0} \frac{\int_{0}^{x^2} \tan^{-1}(t) \, dt}{\int_{0}^{x^2} \sin(\sqrt{t}) \, dt} = 0. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr oo)((int_(0)^(x+y)e^(t^(2))dt)^(2))/(int_(0)^(x+y)e^(2t^(2))dt) is equal to (i)0(ii)1 (iii) lim_(x rarr0)((int_(0)^(x)cos t^(2))/(x))-1(iv)-1

int_(0)^(1)t^(2)sqrt(1-t)*dt

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

lim_(xrarroo)((int_(0)^(x)e^(t^(2))dt)^(2))/(int_(0)^(x)e^(2t^(2))dt) is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)dt)/(sqrt(x^(2)+1)) is equal to

lim_(x to 0)(int_(0)^t(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

If lim_(xrarr0)(int_(0)^(x^2)(cos^2t)dt)/(xsinx)