Home
Class 12
MATHS
If x=int(c^(2))^(tan t)tan^(-1)z dz, y= ...

If `x=int_(c^(2))^(tan t)tan^(-1)z dz, y= int_(n)^(sqrt(t))(cos(z^(2)))/(z)dx` then `(dy)/(dx)` is equal to : (where c and n are constants) :

A

`(tan t)/(2 t)`

B

`(cos^(2)t)/(t^(2))`

C

`(cos^(3)t)/(2t^(2))`

D

`(tan t^(2))/(2t^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \(\frac{dy}{dx}\) given the definitions of \(x\) and \(y\): 1. **Define \(x\) and \(y\)**: \[ x = \int_{c^2}^{\tan t} \tan^{-1} z \, dz \] \[ y = \int_{n}^{\sqrt{t}} \frac{\cos(z^2)}{z} \, dz \] 2. **Differentiate \(x\) with respect to \(t\)**: Using the Fundamental Theorem of Calculus and the chain rule: \[ \frac{dx}{dt} = \frac{d}{dt} \left( \int_{c^2}^{\tan t} \tan^{-1} z \, dz \right) = \tan^{-1}(\tan t) \cdot \frac{d}{dt}(\tan t) = \tan^{-1}(\tan t) \cdot \sec^2 t \] Since \(\tan^{-1}(\tan t) = t\) for \(t\) in the principal range: \[ \frac{dx}{dt} = t \cdot \sec^2 t \] 3. **Differentiate \(y\) with respect to \(t\)**: Again, using the Fundamental Theorem of Calculus: \[ \frac{dy}{dt} = \frac{d}{dt} \left( \int_{n}^{\sqrt{t}} \frac{\cos(z^2)}{z} \, dz \right) = \frac{\cos((\sqrt{t})^2)}{\sqrt{t}} \cdot \frac{d}{dt}(\sqrt{t}) = \frac{\cos(t)}{\sqrt{t}} \cdot \frac{1}{2\sqrt{t}} = \frac{\cos(t)}{2t} \] 4. **Find \(\frac{dy}{dx}\)**: Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\frac{\cos(t)}{2t}}{t \cdot \sec^2 t} \] Simplifying this expression: \[ \frac{dy}{dx} = \frac{\cos(t)}{2t} \cdot \frac{1}{t \cdot \sec^2 t} = \frac{\cos(t)}{2t^2} \cdot \cos^2 t = \frac{\cos^3 t}{2t^2} \] 5. **Final Result**: Therefore, the value of \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{\cos^3 t}{2t^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Ifx=int_c^(sint)sin^(-1)z dz ,y=int_k^(sqrt(t))(sinz^2)/zdz ,t h e n(dy)/(dx)i se q u a lto (tant)/(2t) (b) (tant)/(t^2) (c) tan t/(2t^2) (d) (t a tt^2)/(2t^2)

If int _(0) ^(y) cos t ^(2) dt= int _(0) ^(x ^(2)) (sint)/(t ) dt then (dy)/(dx) is equal to

If int_(0)^(y)cos t^(2)dt=int_(0)^(x^(2))(sin t)/(t)dt, then (dy)/(dx) is

If x=a(cos t+(log tan)(1)/(2)),y=a sin t then (dy)/(dx) is equal to

The integral int(1)/((1+sqrt(x))sqrt(x-x^(2)))dx is equal to (where C is the constant of integration)

If y=sin^(-1)x,z=cos^(-1)sqrt(1-x^(2))," then: "(dy)/(dz)=

What is int sin^(2) x dx + int cos^(2) x dx equal to ? Where c is an arbitary constant