Home
Class 12
MATHS
For x epsilonR, and a continuous functio...

For `x epsilonR`, and a continuous function `f` let `I_(1)=int_(sin^(2)t)^(1+cos^(2)t)xf{x(2-x)}dx` and `I_(2)=int_(sin^(2)t)^(1+cos^(2)t)f{x(2-x)}dx`.
Then `(I_(1))/(I_(2))` is

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

For x in R and a continuous function f(x) , let I_(1)int_(sin^(2)t)^(1+cos^(2)t) xf{x(2-x)} dx and I_(2) I_(1)int_(sin^(2)t)^(1+cos^(2)t) f(x(2-x))dx. Then, (I_(1))/(I_(2)) =

For x in R and a continuous function f, let I_1=int_(s in^2t)^(1+cos^2t)xf{x(2-x)}dxa n dI_2=int_(sin^2t)^(1+cos^2)xf{x(2-x)}dxdotT h e n(I_1)/(I_2) is -1 (b) 1 (c) 2 (d) 3

For any tinR and f be a continuous function, let I_1 = int _(sin^2t)^(1+cos^2t) x*f(x(2-x))dx and I_2 =int_(sin^2t)^(1+cos^2t) f(x(2-x))dx. Then I_1/I_2is (i)0 (ii)1 (iii)2 (iv)3

For any x in R, and f be a continuous function Let I_(1) = int _(sin ^(2)x )^(1-cos ^(2)x) tf t (2-t)dt, I_(2) = int _(sin ^(2)x ) ^(1+cos ^(2)x) f (t(2-t))dt, then I_(1)=

If I_(1)=int_(3pi)^(0) f(cos^(2)x)dx and I_(2)=int_(pi)^(0) f(cos^(2)x) then

Let I_(1)=int_(1)^(2)(1)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

If I_(1)=int_(0)^( pi)xf(sin^(3)x+cos^(2)x)dx and I_(2)=int_(0)^((pi)/(2))f(sin^(3)x+cos^(2)x)dx, then relate I_(1) and I_(2)

Let f be a positive function.If I_(1)=int_(1-k)^(k)xf[x(1-x)]dx and I_(2)=int_(1-k)^(k)f[x(1-x)]backslash dx, where 2k-1>0. Then (I_(1))/(I_(2)) is