Home
Class 12
MATHS
Evaluate : int(0)^(pi//2)sin^(8)xdx...

Evaluate :
`int_(0)^(pi//2)sin^(8)xdx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{\frac{\pi}{2}} \sin^8 x \, dx \), we can use the Wallis formula for integrals of sine functions. ### Step-by-Step Solution: 1. **Identify the Integral**: We need to evaluate: \[ I = \int_{0}^{\frac{\pi}{2}} \sin^8 x \, dx \] 2. **Apply Wallis' Formula**: Wallis' formula states that for even \( n \): \[ \int_{0}^{\frac{\pi}{2}} \sin^n x \, dx = \frac{(n-1)(n-3)(n-5)\ldots(3)(1)}{n(n-2)(n-4)\ldots(4)(2)} \cdot \frac{\pi}{2} \] Here, \( n = 8 \) (which is even). 3. **Calculate the Numerator**: The numerator is: \[ (8-1)(8-3)(8-5)(8-7) = 7 \cdot 5 \cdot 3 \cdot 1 = 105 \] 4. **Calculate the Denominator**: The denominator is: \[ 8 \cdot 6 \cdot 4 \cdot 2 = 384 \] 5. **Combine the Results**: Now substitute these values into Wallis' formula: \[ I = \frac{105}{384} \cdot \frac{\pi}{2} \] 6. **Final Calculation**: \[ I = \frac{105 \pi}{768} \] Thus, the value of the integral \( \int_{0}^{\frac{\pi}{2}} \sin^8 x \, dx \) is: \[ \boxed{\frac{105 \pi}{768}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)sin^(2)xdx=?

int_(0)^( pi/4)sin^(4)xdx

int_(0)^((pi)/(2))sin^(2)xdx

int_(0)^( pi)x sin^(3)xdx

Evaluate: int_(0)^( pi/2)sin^(4)xdx

int_(0)^( pi)sin^(2)xdx

int_(0)^(2 pi)sin^(3)xdx

int_(0)^( pi)sin^(5)xdx

Evaluate : int_(0)^( pi/4)x sin^(2)xdx

"int_(0)^( pi)x sin^(2)xdx