Home
Class 12
MATHS
Evaluate : int(0)^(pi//2)sin^(9)x co...

Evaluate :
`int_(0)^(pi//2)sin^(9)x cos^(7)xdx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{\frac{\pi}{2}} \sin^9 x \cos^7 x \, dx \), we can use the Beta function or the formula for integrals of the form \( \int_{0}^{\frac{\pi}{2}} \sin^{m} x \cos^{n} x \, dx \). ### Step-by-Step Solution: 1. **Identify the parameters**: Here, we have \( m = 9 \) and \( n = 7 \). 2. **Use the formula**: The integral can be evaluated using the formula: \[ \int_{0}^{\frac{\pi}{2}} \sin^{m} x \cos^{n} x \, dx = \frac{1}{2} B\left(\frac{m+1}{2}, \frac{n+1}{2}\right) \] where \( B(x, y) \) is the Beta function defined as: \[ B(x, y) = \int_{0}^{1} t^{x-1} (1-t)^{y-1} \, dt \] 3. **Calculate the Beta function**: For our case: \[ B\left(\frac{9+1}{2}, \frac{7+1}{2}\right) = B(5, 4) \] 4. **Use the relationship between Beta and Gamma functions**: The Beta function can also be expressed in terms of Gamma functions: \[ B(x, y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} \] Therefore: \[ B(5, 4) = \frac{\Gamma(5) \Gamma(4)}{\Gamma(9)} \] 5. **Calculate the Gamma values**: We know: \[ \Gamma(5) = 4! = 24, \quad \Gamma(4) = 3! = 6, \quad \text{and} \quad \Gamma(9) = 8! = 40320 \] 6. **Substitute the values into the Beta function**: \[ B(5, 4) = \frac{24 \times 6}{40320} = \frac{144}{40320} = \frac{1}{280} \] 7. **Final calculation**: Now substituting back into the integral: \[ I = \frac{1}{2} B(5, 4) = \frac{1}{2} \cdot \frac{1}{280} = \frac{1}{560} \] ### Final Answer: \[ I = \frac{1}{560} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)sin^(6)x cos^(2)xdx

int_(0)^( pi/2)sin^(2)x cos^(3)xdx

int_(0)^(pi/2)sin^(6)x cos^(5)xdx=

int_(0)^( pi/2)sin^(8)x cos^(2)xdx=

int_(0)^( pi/2)sin^(3)x*cos^(2)xdx

int_(0)^( pi)x sin^(7)x cos^(6)xdx

"int_(0)^( pi)sin^(7)x cos^(3)xdx

int_(0)^(2 pi)sin^(3)x cos^(2)xdx

int_(0)^((pi)/(2))sin^(4)x cos^(4)xdx

int_(0)^((pi)/(2))sin^(2)x cos^(3)xdx=