Home
Class 12
MATHS
Evaluate : int(0)^(pi//2)cos^(9)xdx...

Evaluate :
`int_(0)^(pi//2)cos^(9)xdx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{\frac{\pi}{2}} \cos^9 x \, dx \), we can use the reduction formula for integrals of the form \( \int_{0}^{\frac{\pi}{2}} \cos^n x \, dx \). ### Step-by-step Solution: 1. **Identify the Integral**: We want to evaluate \( I = \int_{0}^{\frac{\pi}{2}} \cos^9 x \, dx \). 2. **Use the Reduction Formula**: The reduction formula for \( \int_{0}^{\frac{\pi}{2}} \cos^n x \, dx \) is given by: \[ \int_{0}^{\frac{\pi}{2}} \cos^n x \, dx = \frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} \cos^{n-2} x \, dx \] We will apply this formula to our integral. 3. **Apply the Reduction Formula**: For \( n = 9 \): \[ I = \frac{8}{9} \int_{0}^{\frac{\pi}{2}} \cos^7 x \, dx \] Let \( I_7 = \int_{0}^{\frac{\pi}{2}} \cos^7 x \, dx \). 4. **Continue Applying the Reduction Formula**: Now we need to evaluate \( I_7 \): \[ I_7 = \frac{6}{7} \int_{0}^{\frac{\pi}{2}} \cos^5 x \, dx \] Let \( I_5 = \int_{0}^{\frac{\pi}{2}} \cos^5 x \, dx \). 5. **Repeat the Process**: Continuing this process: \[ I_5 = \frac{4}{5} \int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx \] Let \( I_3 = \int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx \). 6. **Final Step**: \[ I_3 = \frac{2}{3} \int_{0}^{\frac{\pi}{2}} \cos x \, dx \] Since \( \int_{0}^{\frac{\pi}{2}} \cos x \, dx = 1 \), we have: \[ I_3 = \frac{2}{3} \cdot 1 = \frac{2}{3} \] 7. **Back Substitute**: Now substituting back: \[ I_5 = \frac{4}{5} I_3 = \frac{4}{5} \cdot \frac{2}{3} = \frac{8}{15} \] \[ I_7 = \frac{6}{7} I_5 = \frac{6}{7} \cdot \frac{8}{15} = \frac{48}{105} \] \[ I = \frac{8}{9} I_7 = \frac{8}{9} \cdot \frac{48}{105} = \frac{384}{945} \] 8. **Simplify the Result**: Finally, we can simplify \( \frac{384}{945} \): \[ \frac{384}{945} = \frac{128}{315} \] Thus, the value of the integral \( I = \int_{0}^{\frac{\pi}{2}} \cos^9 x \, dx \) is \( \frac{128}{315} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)cos^(3)xdx

int_(0)^( pi/2)cos^(6)xdx

"int_(0)^( pi/2)cos^(n)xdx

int_(0)^((pi)/(2))cos^(2)xdx

int_(0)^(2 pi)cos^(5)xdx=

int_(0)^((pi)/(2))cos^(4)xdx

int_(0)^((pi)/(2))cos^(8)xdx

int_(0)^(2 pi)cos^(7)xdx

int_(0)^(2 pi)cos^(4)xdx

int_(0)^( pi)cos^(5)xdx