Home
Class 12
MATHS
Let I(1)=int(0)^(pi//4)e^(x^(2))dx, I(2)...

Let `I_(1)=int_(0)^(pi//4)e^(x^(2))dx, I_(2) = int_(0)^(pi//4) e^(x)dx, I_(3) = int_(0)^(pi//4)e^(x^(2)).sin x dx`, then :

A

`I_(1)gt I_(2)gt I_(3)gt I_(4)`

B

`I_(2)gt I_(3)gt I_(4)gt I_(1)`

C

`I_(3)gt I_(4)gt I_(1)gt I_(2)`

D

`I_(2)gt I_(1)gt I_(3)gt I_(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the three integrals \( I_1 \), \( I_2 \), and \( I_3 \) defined as follows: 1. \( I_1 = \int_{0}^{\frac{\pi}{4}} e^{x^2} \, dx \) 2. \( I_2 = \int_{0}^{\frac{\pi}{4}} e^{x} \, dx \) 3. \( I_3 = \int_{0}^{\frac{\pi}{4}} e^{x^2} \sin x \, dx \) We need to determine the relationship between these integrals. ### Step 1: Analyze \( I_1 \) and \( I_2 \) First, we note that for \( x \) in the interval \( [0, \frac{\pi}{4}] \), the value of \( x^2 \) is less than \( x \) since \( \frac{\pi}{4} < 1 \). Therefore, we have: \[ x^2 < x \quad \text{for } x \in [0, \frac{\pi}{4}] \] This implies that: \[ e^{x^2} < e^{x} \quad \text{for } x \in [0, \frac{\pi}{4}] \] Thus, when we integrate both sides over the interval from \( 0 \) to \( \frac{\pi}{4} \): \[ I_1 < I_2 \] ### Step 2: Analyze \( I_3 \) Next, we analyze \( I_3 \). We know that \( \sin x \) is a positive function in the interval \( [0, \frac{\pi}{4}] \) and \( \sin x < 1 \) for \( x \in [0, \frac{\pi}{4}] \). Therefore, we can say: \[ e^{x^2} \sin x < e^{x^2} \quad \text{for } x \in [0, \frac{\pi}{4}] \] Integrating both sides gives: \[ I_3 < I_1 \] ### Step 3: Combine the results From our analysis, we have established the following inequalities: \[ I_3 < I_1 < I_2 \] ### Conclusion Thus, the relationship among the integrals is: \[ I_3 < I_1 < I_2 \] ### Final Answer The correct order is \( I_3 < I_1 < I_2 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4)e^(x)sin x dx =

I=int_(0)^(2 pi)e^(sin^(2)x+sin x+1)dx then

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then

int_(0)^(pi//2) e^(x) cos x" " dx=

If I_(1)=int_(0)^(pi//2)log (sin x)dx and I_(2)=int_(0)^(pi//2)log (sin 2x)dx , then

If I_(1)=int_(0)^(pi//2)"x.sin x dx" and I_(2)=int_(0)^(pi//2)"x.cos x dx" , then

If I = int_(0)^(pi//4) sin^(2) x" "dx and J = int_(0)^(pi//4)cos^(2)x" " dx. then

int_(-pi//4)^(pi//4) e^(-x)sin x" dx" is