Home
Class 12
MATHS
The value of lim(x to oo)(d)/(dx)int(sq...

The value of `lim_(x to oo)(d)/(dx)int_(sqrt(3))^(sqrt(x))(r^(3))/((r+1)(r-1))dr` is :

A

0

B

1

C

`(1)/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given limit problem step by step, we will follow the process outlined in the video transcript. ### Step 1: Set up the limit and the integral We start with the expression: \[ \lim_{x \to \infty} \frac{d}{dx} \int_{\sqrt{3}}^{\sqrt{x}} \frac{r^3}{(r+1)(r-1)} \, dr \] ### Step 2: Apply Leibniz's Rule According to Leibniz's rule for differentiation under the integral sign, we can differentiate the integral with respect to \( x \): \[ \frac{d}{dx} \int_{a}^{b(x)} f(r) \, dr = f(b(x)) \cdot b'(x) - f(a) \cdot a'(x) \] In our case, \( a = \sqrt{3} \) (a constant) and \( b(x) = \sqrt{x} \). Thus, we have: \[ \frac{d}{dx} \int_{\sqrt{3}}^{\sqrt{x}} \frac{r^3}{(r+1)(r-1)} \, dr = \frac{\left(\sqrt{x}\right)^3}{(\sqrt{x}+1)(\sqrt{x}-1)} \cdot \frac{d}{dx}(\sqrt{x}) - 0 \] ### Step 3: Calculate \( b'(x) \) The derivative of \( b(x) = \sqrt{x} \) is: \[ b'(x) = \frac{1}{2\sqrt{x}} \] ### Step 4: Substitute into the expression Now substituting \( b(x) \) and \( b'(x) \) into the expression gives us: \[ = \frac{x^{3/2}}{(\sqrt{x}+1)(\sqrt{x}-1)} \cdot \frac{1}{2\sqrt{x}} \] ### Step 5: Simplify the expression This simplifies to: \[ = \frac{x^{3/2}}{(\sqrt{x}+1)(\sqrt{x}-1)} \cdot \frac{1}{2\sqrt{x}} = \frac{x^{3/2}}{2\sqrt{x}((\sqrt{x}+1)(\sqrt{x}-1))} = \frac{x^{3/2}}{2\sqrt{x}(x-1)} = \frac{x}{2(x-1)} \] ### Step 6: Take the limit as \( x \to \infty \) Now we take the limit: \[ \lim_{x \to \infty} \frac{x}{2(x-1)} = \lim_{x \to \infty} \frac{x}{2x - 2} = \lim_{x \to \infty} \frac{1}{2 - \frac{2}{x}} = \frac{1}{2} \] ### Final Answer Thus, the value of the limit is: \[ \frac{1}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x to oo)((1+3x)/(2+3x))^((1-sqrt(x))/(1-x)) is

lim_(x rarr+oo)(d)/(dx)int_(2(sin1)/(x))^(3sqrt(x))(3t^(4)+1)/((t-3)(t^(2)+3))dt

lim_(x to oo ) (sqrt(3x^(2)-1)-sqrt(2x^(2)-3))/(4x+3)

lim_(x rarr oo)x^((3)/(2))(sqrt(x^(3)+1)-sqrt(x^(3)-1))

If a>1, then the value of lim_(x rarr oo)(a^(sqrt(x))-a^(sqrt((1)/(x))))/(a^(sqrt(x))+a^(sqrt(x))) is

(d)/(dx)int_(t^(2))^(x^(3))(dt)/(sqrt(x^(2)+t^(4)))

The value of lim_(n rarr oo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^(2)) is equal to (1)/(35) (b) (1)/(4)(c)(1)/(10) (d) (1)/(5)

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

The value of lim_(xrarr oo) (3sqrt(x^3+x^2)-3sqrt(x^3-x^2)) , is

The value of int_(- sqrt(3) )^( sqrt(3)) ((d)/(dx ) ( tan^(-1) (1/ x)) + x^(3) ) dx is