Home
Class 12
MATHS
Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^...

Let `f(x)=(e^(x)+1)/(e^(x)-1) and int_(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1) dx= alpha "Then" , int_(-1)^(1) t^(3) f(t) dt` is equal to

A

0

B

`2 lambda`

C

`lambda`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(e^(x)+1)/(e^(-x)-1) and int_(0)^(1)x^(3)(e^(x)+1)/(e^(x)-1) dx=alpha"then", int_(-1)^(1)int t^(3)f(t)dt is equal to

Let f(x)=(e^x+1)/(e^x-1) and int_0^1x^3*(e^x+1)/(e^x-1)dx=alpha. Then int_-1^1 t^3f(t) dt is equal to

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

int_(0)^(1)(e^(x))/((1+e^(2x)))dx

int_(0)^(1)(e^(x)dx)/(1+e^(x))

int_(0)^(1)e^(e^(x))(1+xe^(x))dx

int_(0)^(1)(e^(x))/(1+e^(2x))dx

int_(0)^(1)(1)/(e^(x)+e^(-x))dx=

If A=int_(0)^(1)(e^(x))/(x+1)dx then int_(0)^(1)(x^(2)e^(x))/(x+1)dx=