Home
Class 12
MATHS
Let f : R->R be given by f(x) = {|x-[x]...

Let `f : R->R` be given by `f(x) = {|x-[x]|`, when [x] is odd and `|x-[x]-1|` , when [x] is even ,where [.] denotes the greatest integer function , then `int_-2^4 f(x) dx` is equal to

A

`(5)/(2)`

B

`(3)/(2)`

C

5

D

3

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If f(x) = [x] - [x/4], x in R where [x] denotes the greatest integer function, then

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f:Irarr I be defined by f(x)=[x+1] ,where [.] denotes the greatest integer function then f(x) is equal to

Let f : R to R is a function defined as f(x) where = {(|x-[x]| ,:[x] "is odd"),(|x - [x + 1]| ,:[x] "is even"):} [.] denotes the greatest integer function, then int_(-2)^(4) dx is equal to

Let f(x)=1+|x|,x =-1, where [* denotes the greatest integer function.Then f{f(-2.3)} is equal to