Home
Class 12
MATHS
Let f(x)={1-|x|,|x| leq 1 and 0,|x| lt ...

Let `f(x)={1-|x|,|x| leq 1 and 0,|x| lt 1 and g(x)=f(x-)+f(x + 1)`, for all `x in R`.Then,the value of `int_-3^3 g(x)dx` is

A

2

B

3

C

4

D

5

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={1-|x|,|x|<=1 and 0,|x|<1 and g(x)=f(x-)+f(x+1) ,for all x in R .Then,the value of int_(-3)^(3)g(x)dx is

f(x)={[1-|x|,|x| 1' find the value of int_(-3)^(5)g(x)dx

Let f(x)=minimum{|x|,1-|x|,(1)/(4)} for x varepsilon R then the value of int_(-1)^(1)f(x)dx is equal to

let ( f(x) = 1-|x| , |x| 1 ) g(x)=f(x+1)+f(x-1)

If f(x)=x^(2)g (x) and g(1)=6, g'(x) 3 , find the value of f' (1).

Let the function f be defined by f (x) = |x-1| -1/2, 0 le x le 2, f (x +2 ) = f (x) for all x in R. Evaluate (i) int _(0) ^(100) f (x) dx (ii) int _(0) ^(1)| f(2x ) |dx

Let f:R to R be continuous function such that f(x)=f(2x) for all x in R . If f(t)=3, then the value of int_(-1)^(1) f(f(x))dx , is

Let g(x)= f(x) +f'(1-x) and f''(x) lt 0 ,0 le x le 1 Then