Home
Class 12
MATHS
The value of int0^pi(sin(n+1/2)x)/(sin(x...

The value of `int_0^pi(sin(n+1/2)x)/(sin(x/2)dx` is

A

`pi//2`, for all `n in` even

B

0, for all `n in` integer

C

`2pi`, for all `n in` odd

D

`pi`, for all `n in` integer

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^( pi)(sin(1+(1)/(2))x)/(sin((x)/(2)))dx is,(a) n in I,n>=0(pi)/(2)(b)0(c)pi(d)2 pi

Prove that cosx+cos2x+ … + cosnx=(sin(n+1/2)x-sin(x/2))/(2sin(x/2)) and hence prove that : int_0^1(sin(n+1/2)x)/sin(x/2)dx=pi

int_(0)^(pi)(x sin x)/(1-sin x)dx=

int_(0)^( pi)(x sin x)/(1+sin x)dx

int_(0)^( pi)(x sin(x))/(1+sin(x))dx

If int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=In2, then the value of int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to:

int_(0)^(pi/2) sin^(-1)(sin x)dx

int_(0)^( pi/2)(sin x)/(1+cos x)dx