Home
Class 12
MATHS
Consider the integrals I(1)=overset(1)...

Consider the integrals
`I_(1)=overset(1)underset(0)inte^(-x)cos^(2)xdx,I_(2)=overset(1)underset(0)int e^(-x^(2))cos^(2)x dx,I_(3)=overset(1)underset(0)int e^(-x^(2))dx`
and `I_(4)=overset(1)underset(0)int e^(-x^(1//2)x^(2))dx`. The greatest of these integrals, is

A

`I_(1)lt I_(2)lt I_(3)`

B

`I_(3)lt I_(2)lt I_(1)`

C

`I_(2)lt I_(1)lt I_(3)`

D

`I_(2)lt I_(3)lt I_(1)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the integrals I_(1)=int_(0)^(1)e^(-x)cos^(2)xdx,I_(2)=int_(0)^(1) e^(-x^(2))cos^(2)x dx,I_(3)=int_(0)^(1) e^(-x^(2))dx and I_(4)=int_(0)^(1) e^(-x^(1//2)x^(2))dx . The greatest of these integrals, is

The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

I=int(e^(2x)-1)/(e^(2x))dx

underset(1)overset(e)int (e^(x))/(x) (1 + x log x)dx

I=int_(0)^(1)e^(x^(2)-x)dx then

If i is the greatest of the definite integrals I_(1)=int_(0)^(1)e^(-x)cos^(2)dx,I_(2)=int_(0)^(1)e^(-x^(2))cos^(2)xdx and I_(3)=int_(0)e^(-x^(2))dx,I_(4)=int_(0)^(1)e^(-((x^(2))/(2)))dx then (A)I_(1)(B)I_(2)(C)I_(3)(D)I_(4)

Estimate the value of underset(0)overset(1)e^(x^(2))dx by using underset(0)overset(1)e^(x)dx .

If I_(1)=int_(0)^(1) 2^(x^(2)) dx, I_(2)=int_(0)^(1) 2^(x^(3)) dx, I_(3)=int_(1)^(2) 2^(x^(2))dx and I_(4)=int_(1)^(2) 2^(x^(2))dx then