Home
Class 12
MATHS
Given overset(2)underset(1)inte^(x^(2))d...

Given `overset(2)underset(1)inte^(x^(2))dx=a`, the value of `overset(e^(4))underset(e )int sqrt(log_(e )x)dx`, is

A

`e^(4)-e`

B

`e^(4)-a`

C

`2e^(4)-a`

D

`2e^(4)-e-a`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int2^(log_(e)x)dx

int e^(a log_(e)x)dx

int sin^(2)(log_(e)x)dx

int e^(log_(e)x)dx

Given int_(1)^(2) e^(x^(2))dx=a , the value of int_(e )^(e^(4)) sqrt(log_(e )x)dx , is

int x log_(e)(1+x)dx

int e^(x^(2)+ln x)dx

The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

int(e^(log_(e)x))/(x)dx

int(e^(log_(e)x))/(x)dx