Home
Class 12
MATHS
If f'(x) = f(x)+ int (0)^(1)f (x) dx and...

If `f'(x) = f(x)+ int _(0)^(1)f (x)` dx and given `f (0) =1,` then `int f (x) dx` is equal to :

A

`(e^(x))/(2-e)+((1+e)/(1-e))`

B

`(2e^(x))/(3-e)+((1-e)/(3-e))`

C

`(e^(x))/(2-e)`

D

`(2e^(x))/(3-e)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(x)=f(x)+int_(0)^(1)f(x)dx ,given f(0)=1 , then the value of f(log_(e)2) is

If f(x) = f(a+x) and int_(0)^(a) f(x) dx = k, "then" int _(0)^(na) f(x) dx is equal to

if int_(0)^(1)f(x)dx=1 and f(2x)=2f(x) then 3int_(1)^(2)f(x)dx is equal to

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

If int f(x)dx=F(x), then int x^(3)f(x^(2))dx is equal to:

If int f(x)dx=f(x), then int{f(x)}^(2)dx is equal to

If int_(-1)^(1)f(x)dx=0 then