Home
Class 12
MATHS
(sin 2 kx)/(sin x)=2[cos x + cos 3 x + …...

`(sin 2 kx)/(sin x)=2[cos x + cos 3 x + …+cos (2k -1)x]`, then value of `I=int_(0)^(pi//2)(sin 2 k x)/(sin x)cos x dx` is :

A

`-pi//2`

B

0

C

`pi//2`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{2}} \frac{\sin(2kx)}{\sin(x)} \cos(x) \, dx \), we will use the given identity: \[ \frac{\sin(2kx)}{\sin(x)} = 2 \left( \cos(x) + \cos(3x) + \ldots + \cos((2k-1)x) \right) \] ### Step 1: Substitute the identity into the integral We can substitute the identity into the integral: \[ I = \int_0^{\frac{\pi}{2}} 2 \left( \cos(x) + \cos(3x) + \ldots + \cos((2k-1)x) \right) \cos(x) \, dx \] This simplifies to: \[ I = 2 \int_0^{\frac{\pi}{2}} \left( \cos^2(x) + \cos(x) \cos(3x) + \ldots + \cos(x) \cos((2k-1)x) \right) \, dx \] ### Step 2: Evaluate each term in the integral Now we will evaluate each term separately. We know that: \[ \int_0^{\frac{\pi}{2}} \cos^2(x) \, dx = \frac{\pi}{4} \] For the other terms, we use the property of integrals of the product of cosines: \[ \int_0^{\frac{\pi}{2}} \cos(mx) \cos(nx) \, dx = \begin{cases} \frac{\pi}{4} & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases} \] ### Step 3: Apply the property to the integral In our case: - The first term is \( \cos^2(x) \) which gives \( \frac{\pi}{4} \). - The second term is \( \cos(x) \cos(3x) \) where \( m = 1 \) and \( n = 3 \), thus it evaluates to 0. - Similarly, \( \cos(x) \cos(5x) \), \( \cos(x) \cos(7x) \), ..., \( \cos(x) \cos((2k-1)x) \) will also evaluate to 0 since \( m \) and \( n \) are not equal. ### Step 4: Combine the results Thus, the integral simplifies to: \[ I = 2 \left( \frac{\pi}{4} + 0 + 0 + \ldots + 0 \right) = 2 \cdot \frac{\pi}{4} = \frac{\pi}{2} \] ### Final Result So, the value of the integral \( I \) is: \[ I = \pi \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(1+sin x)/(2+sin x + cos x) dx=

int_(0)^(pi//2)(sin x - cos x)/(1-sin x cos x)dx=

int_(0)^( pi/2)(sin x-cos x)/(1+sin x*cos x)*dx

The value of int _(0)^(pi//2)(sin ^(2)x-cos ^(2)x)/(sin ^(3)x+cos^(3)x)dx is

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is

If for k in N backslash(sin2kx)/(sin x)=2[cos x+cos3x+...+cos(2k-1)x] Then the value of I=int_(0)^( pi/2)sin2kx*cot x backslash dx is

int_(0)^((pi)/(2))(x)/(sin x+cos x)dx

Evaluate: int_(0)^((pi)/(2))(sin^(2)x)/(1+sin x cos x)dx