Home
Class 12
MATHS
The value of int1^e((tan^(-1)x)/x+(logx)...

The value of `int_1^e((tan^(-1)x)/x+(logx)/(1+x^2))dxi s` `tane` (b) `tan^(-1)e` `tan^(-1)(1/e)` (d) none of these

A

`-tan^(-1)e`

B

`log(tan e)`

C

`tan^(-1)((1)/(e ))`

D

`tan^(-1)e`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(1)^(e)((tan^(-1)x)/(x)+(log x)/(1+x^(2)))dx is tan e(b)tan^(-1)e tan^(-1)((1)/(e))(d) none of these

e^(tan^(-1)x)log(tan x)

The value of int e^(tan-1)x((1+x+x^(2))/(1+x^(2)))dx

The value of int_(1)^(e^(2)) (dx)/(x(1+logx)^(2)) is

int(e^(ln tan^(-1)x))/(1+x^(2))dx

int e^(tan^(-1)x)((1)/(1+x^(2)))dx=

int(e^(m tan^(-1)x))/(1+x^(2))dx

int(e^(a tan^(-1)x))/(1+x^(2))dx

int(e^(a tan^(-1)x))/(1+x^(2))dx