Home
Class 12
MATHS
Let lambda=int0^1(dx)/(1+x^3),p=(lim)(nv...

Let `lambda=int_0^1(dx)/(1+x^3),p=(lim)_(nvecoo)[(prodr=1n(n^3+r^3)/(n^(3n))]^(-1/n)` then `ln p` is equal to `ln2-1+lambda` (b) `ln2-3+3lambda` `2ln2-lambda` (d) `ln4-3+3lambda`

A

`log 2-1+lambda`

B

`log 2-3+3lambda`

C

`2log 2-lambda`

D

`log 4-3+2lambda`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let lambda=int_(0)^(1)(dx)/(1+x^(3)),p=(lim)_(n rarr oo)[(prod_(r=1)^(n)(n^(3)+r^(3)))/(n^(3n))]^(-) then ln p is equal to (a)ln2-1+lambda(b)ln2-3+3 lambda(c)2ln2-lambda(d)ln4-3+3 lambda

Let P(n):3^(n) =lambda then smallest value of lambda is

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

If lim_(x rarr e^(3))((ln x-3)^(n))/(ln((cos^(m)(ln x-3))))=-1backslash(n,m in N) then (n)/(m) is equal to

(lim)_(x->0)((1^x+2^x+3^x++n^x)/n)^(1/x)\ is equal to (n\ !)\ ^n b. (n !)^(1//n) c. n ! d. "ln"(n !)

Evaluate : int_0^1x ln(1+2x)dx=(3I n3)/8

If a!=1 and In a^(2)+(In a^(2))^(2)+(In a^(2))3+...=3(ln a+(ln a)^(2)+(ln a)^(3)+(ln a)^(4)+...) then 'a' is equal to

let 1+2x+3x^(2)+4x^(3)+.......+ the least value of x is lambda then lambda equals