Home
Class 12
MATHS
Let f:(0,oo)to R and F(x)=int(0)^(x) f(t...

Let `f:(0,oo)to R and F(x)=int_(0)^(x) f(t)dt. " If " F(x^(2))=x^(2)(1+x)`, then f(4) equals

A

`5//4`

B

7

C

4

D

2

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:(0, oo) in R and F(x) = int_(0)^(x) f(t) dt . If F(x^(2))=x^(2)(1+x) then f (4) equals

Let f : (0,oo) to R and F(x)=int_(0)^(x)t f(t)dt . If F(x^(2))=x^(4)+x^(5) , then

Let f:(0, oo) rarr R and F(x^(2))=int_(0)^(x^(2))f(t)dt. " If "F(x^(2))=x^(2)(1+x) , then f(4) is equal to ________________

f:(0,oo)->R and F(x)=int_(0)^(x)f(t)dtIfF(x^(2))=x^(2)(1+x),thenf(4)

Let f:(0,oo)rarr R and F(x)=int_(0)^(x)t.f(t)dt. If F(x^(2))=x^(4)+x^(5), then sum_(r=1)^(12)f(r^(2)) equals (A) 216(B)219 (C) 221(D)225

Let f:(0,oo)rarr R and F(x^(3))=int_(0)^(x^(2))f(t)dt If F(x^(3))=x^(3)(x^(2)+x+1), then f(27)=

Let f:(0,oo)rarrR and F(x)=int_0^x f(t)dt . If F(x^2)=x^2(1+x) , then f(4)= (A) 5/4 (B) 7 (C) 4 (D) 2

Let f:(0,oo)to R be a continuous function such that F(x)=int_(0)^(x^(2)) tf(t)dt. "If "F(x^(2))=x^(4)+x^(5),"then "sum_(r=1)^(12) f(r^(2))=