Home
Class 12
MATHS
If n is a positive integer then int(0)^...

If n is a positive integer then `int_(0)^(1)(ln x)^(n)dx` is :

A

`n!`

B

`(-1)^(n)n!`

C

`(-1)^(n+2)(n+1)!`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^1 (\ln x)^n \, dx \) where \( n \) is a positive integer, we can use integration by parts. Here’s a step-by-step solution: ### Step 1: Set up the integration by parts We can use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Let: - \( u = (\ln x)^n \) - \( dv = dx \) Then, we differentiate and integrate: - \( du = n (\ln x)^{n-1} \cdot \frac{1}{x} \, dx \) - \( v = x \) ### Step 2: Apply integration by parts Now we apply the integration by parts: \[ I = \left[ x (\ln x)^n \right]_0^1 - \int_0^1 x \cdot n (\ln x)^{n-1} \cdot \frac{1}{x} \, dx \] This simplifies to: \[ I = \left[ x (\ln x)^n \right]_0^1 - n \int_0^1 (\ln x)^{n-1} \, dx \] ### Step 3: Evaluate the boundary term Now we evaluate the boundary term: - At \( x = 1 \): \( \ln(1) = 0 \) so \( 1 \cdot (\ln 1)^n = 0 \). - At \( x = 0 \): \( \ln(0) \) approaches \(-\infty\), but \( x \cdot (\ln x)^n \) approaches \( 0 \) as \( x \) approaches \( 0 \) (since \( x \) goes to \( 0 \) faster than \( (\ln x)^n \) goes to \(-\infty\)). Thus, the boundary term evaluates to \( 0 - 0 = 0 \). ### Step 4: Substitute back into the equation Now we have: \[ I = 0 - n \int_0^1 (\ln x)^{n-1} \, dx \] This gives us: \[ I = -n I_{n-1} \] where \( I_{n-1} = \int_0^1 (\ln x)^{n-1} \, dx \). ### Step 5: Recursion relation We can express this as: \[ I_n = -n I_{n-1} \] ### Step 6: Base case To find \( I_n \), we need to find the base case: For \( n = 1 \): \[ I_1 = \int_0^1 \ln x \, dx \] Using integration by parts again: Let \( u = \ln x \) and \( dv = dx \): - Then \( du = \frac{1}{x} \, dx \) and \( v = x \). \[ I_1 = \left[ x \ln x \right]_0^1 - \int_0^1 x \cdot \frac{1}{x} \, dx = 0 - \int_0^1 1 \, dx = -1 \] ### Step 7: Calculate \( I_n \) Now we can calculate \( I_n \) using the recursion: \[ I_2 = -2 I_1 = -2(-1) = 2 \] \[ I_3 = -3 I_2 = -3(2) = -6 \] \[ I_4 = -4 I_3 = -4(-6) = 24 \] Continuing this pattern, we can generalize: \[ I_n = (-1)^n n! \] ### Final Result Thus, the final result is: \[ I = \int_0^1 (\ln x)^n \, dx = (-1)^n n! \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(log x)dx

If n is a positive odd integer,then int|x^(n)|dx=

"int x^(n)(log x)^(2)dx

int_(0)^(1)(log(1)/(x))^(n-1)dx equals

int_(0)^(1)log(3+x)dx

Determine a positive integer n<=5 such that int_(0)^(1)e^(x)(x-1)^(n)=16-6e

If n is a positive integer and u_(n)=int x^(n)sqrt(a^(2)-x^(2))dx

int_(0)^(1)(log(1+x))/(1+x)dx