Home
Class 12
MATHS
The vlaue of int(a)^(b)(x^(n-1)((n-2)x^(...

The vlaue of `int_(a)^(b)(x^(n-1)((n-2)x^(2)+(n-1)(a+b)x+nab))/((x+a)^(2)(x+b)^(2))dx` is equal to :

A

`(b^(n)+a^(n))/(2(a+b))`

B

`(b^(n-1)-a^(n-1))/(2(a+b))`

C

`(b-a)/(2(a+b))`

D

`(b^(n-1)-a^(n-1))/(2(a^(n)+b^(n)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{a}^{b} \frac{x^{n-1} \left((n-2)x^2 + (n-1)(a+b)x + nab\right)}{(x+a)^2 (x+b)^2} \, dx, \] we can use the method of differentiation under the integral sign. ### Step 1: Rewrite the Integral We can express the integral in a more manageable form. The integrand can be rewritten as: \[ I = \int_{a}^{b} \frac{x^{n-1} \left((n-2)x^2 + (n-1)(a+b)x + nab\right)}{(x+a)^2 (x+b)^2} \, dx. \] ### Step 2: Differentiate the Integral We will differentiate the integral with respect to \( n \): \[ \frac{dI}{dn} = \int_{a}^{b} \frac{x^{n-1} \left(\frac{\partial}{\partial n} \left((n-2)x^2 + (n-1)(a+b)x + nab\right)\right)}{(x+a)^2 (x+b)^2} \, dx. \] Calculating the derivative inside the integral: \[ \frac{\partial}{\partial n} \left((n-2)x^2 + (n-1)(a+b)x + nab\right) = x^2 + (a+b)x + ab. \] Thus, we have: \[ \frac{dI}{dn} = \int_{a}^{b} \frac{x^{n-1} \left(x^2 + (a+b)x + ab\right)}{(x+a)^2 (x+b)^2} \, dx. \] ### Step 3: Evaluate the Integral Now we can evaluate the integral: \[ \frac{dI}{dn} = \int_{a}^{b} \frac{x^{n-1} (x^2 + (a+b)x + ab)}{(x+a)^2 (x+b)^2} \, dx. \] This integral can be simplified using the properties of definite integrals and polynomial long division if necessary. ### Step 4: Integrate with Respect to \( n \) To find \( I \), we integrate \( \frac{dI}{dn} \) with respect to \( n \): \[ I = \int \left( \int_{a}^{b} \frac{x^{n-1} (x^2 + (a+b)x + ab)}{(x+a)^2 (x+b)^2} \, dx \right) dn. \] ### Step 5: Apply Limits Finally, we need to apply the limits of integration \( a \) and \( b \) to evaluate \( I \). ### Conclusion After performing the above steps, we find that the value of the integral is: \[ I = \frac{b^{n} - a^{n}}{(a+b)}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int (x + (1)/(x)) ^(n +5) ((x ^(2) -1)/( x ^(2))) dx is equal to:

int(x+(1)/(x))^(n+5).((x^(2)-1)/(x^(2)))dx is equal to

The vlaue of the integral int_(-1)^(3) ("tan"^(1)(x)/(x^(2)+1)+"tan"^(-1)(x^(2)+1)/(x))dx is equal to

evaluate int_(0)^(1)x^(2)(1-x)^(n)dx

int(2x^(n-1))/(x^(n)+3)dx

int (x ^(n-1))/( x ^(2n) + a ^(2)) dx =

If int_(0)^(b)(dx)/(1+x^(2))=int_(b)^( oo)(dx)/(1+x^(2)) , then b=

Evaluate: int e^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n)))dx

int((a+b sin^(-1)x)^(n))/(sqrt((1-x^(2))))dx

int_(n)^(n+1)f(x)dx=n^(2)+n then int_(-1)^(1)f(x)dx=