Home
Class 12
MATHS
Number of values of x satisfying the equ...

Number of values of `x` satisfying the equation `int_(-1)^x (8t^2+28/3t+4) \ dt=((3/2)x+1)/(log_(x+1)sqrt(x+1)),` is

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Number of values of x satisfying the equation int_(-1)^(x)(8t^(2)+(28)/(3)t+4)backslash dt=(((3)/(2))x+1)/(log_(x+1)sqrt(x+1))

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

Number of values of x, satisfying the equation (sqrt(3)+1)^(2)x+(sqrt(3)-1)^(2)x=2^(3)x, is equal to

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

The number of values of x satisfying the equation log_(2)(log_(3)(log_(2)x)))>=sqrt(8-x)+sqrt(x-8) is :

The number of values of x satisfying the equation log_(2)(9^(x-1)+7)=2+log_(2)(3^(x-1)+1) is :

Find the number of real values of x satisfying the equation log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=3

The total number of integral value of x satisfying the equation x ^(log_(3)x ^(2))-10=1 //x ^(2) is

Find the value of x satisfying the equation,sqrt((log_(3)(3x)^((1)/(3))+log_(x)(3x)^((1)/(3)))log_(3)(x^(3)))+sqrt((log_(3)((x)/(3))^((1)/(3))+log_(x)((3)/(x))^((1)/(3)))log_(3)(x^(3)))=2